Update README.md
Browse files
README.md
CHANGED
|
@@ -100,151 +100,6 @@ base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
|
|
| 100 |
|
| 101 |
# Usage Example
|
| 102 |
|
| 103 |
-
```python
|
| 104 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 105 |
-
from peft import PeftModel
|
| 106 |
-
|
| 107 |
-
# Define the base model and the LoRA model repositories
|
| 108 |
-
base_model_name = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
|
| 109 |
-
repo_id_sentiment = "BEncoderRT/IMDB-Sentiment-LoRA-TinyLlama-1.1B"
|
| 110 |
-
repo_id_translation = "BEncoderRT/EN-FR-Translation-LoRA-TinyLlama-1.1B"
|
| 111 |
-
|
| 112 |
-
# Load the tokenizer (assuming it's consistent across tasks and already defined earlier)
|
| 113 |
-
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
| 114 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 115 |
-
|
| 116 |
-
# Load the base model once
|
| 117 |
-
base_model_for_inference = AutoModelForCausalLM.from_pretrained(
|
| 118 |
-
base_model_name,
|
| 119 |
-
device_map="auto"
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
# Load the first adapter (sentiment) on top of the base model
|
| 123 |
-
# This creates the initial PeftModel instance with the 'sentiment' adapter active
|
| 124 |
-
multi_task_model = PeftModel.from_pretrained(
|
| 125 |
-
base_model_for_inference,
|
| 126 |
-
repo_id_sentiment,
|
| 127 |
-
adapter_name="sentiment" # Name this adapter
|
| 128 |
-
)
|
| 129 |
-
|
| 130 |
-
# Load the second adapter (translation) into the existing PeftModel instance
|
| 131 |
-
multi_task_model.load_adapter(
|
| 132 |
-
repo_id_translation,
|
| 133 |
-
adapter_name="translation" # Name this adapter
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
-
multi_task_model.eval() # Set the model to evaluation mode
|
| 137 |
-
|
| 138 |
-
print("Base model loaded and both sentiment and translation adapters attached.")
|
| 139 |
-
print(f"Loaded adapters: {list(multi_task_model.peft_config.keys())}")
|
| 140 |
-
```
|
| 141 |
-
|
| 142 |
-
```python
|
| 143 |
-
import torch
|
| 144 |
-
|
| 145 |
-
def multi_task_inference(model, tokenizer, prompt_text, task_type, max_new_tokens=100):
|
| 146 |
-
if task_type == "sentiment":
|
| 147 |
-
model.set_adapter("sentiment")
|
| 148 |
-
formatted_prompt = (
|
| 149 |
-
"### Task: Sentiment Analysis\n"
|
| 150 |
-
"### Review:\n"
|
| 151 |
-
f"{prompt_text}\n"
|
| 152 |
-
"### Answer:\n"
|
| 153 |
-
)
|
| 154 |
-
elif task_type == "translation":
|
| 155 |
-
model.set_adapter("translation")
|
| 156 |
-
formatted_prompt = (
|
| 157 |
-
"### Task: Translation (English to French)\n"
|
| 158 |
-
"### English:\n"
|
| 159 |
-
f"{prompt_text}\n"
|
| 160 |
-
"### French:\n"
|
| 161 |
-
)
|
| 162 |
-
else:
|
| 163 |
-
raise ValueError("Invalid task_type. Must be 'sentiment' or 'translation'.")
|
| 164 |
-
|
| 165 |
-
inputs = tokenizer(formatted_prompt, return_tensors="pt", truncation=True, max_length=512).to(model.device)
|
| 166 |
-
|
| 167 |
-
with torch.no_grad():
|
| 168 |
-
outputs = model.generate(
|
| 169 |
-
**inputs,
|
| 170 |
-
max_new_tokens=max_new_tokens,
|
| 171 |
-
do_sample=True,
|
| 172 |
-
temperature=0.7,
|
| 173 |
-
top_k=50,
|
| 174 |
-
top_p=0.95,
|
| 175 |
-
eos_token_id=tokenizer.eos_token_id,
|
| 176 |
-
pad_token_id=tokenizer.pad_token_id
|
| 177 |
-
)
|
| 178 |
-
|
| 179 |
-
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 180 |
-
|
| 181 |
-
# Extracting the answer based on task type
|
| 182 |
-
if task_type == "sentiment":
|
| 183 |
-
answer_start_index = generated_text.find("### Answer:\n")
|
| 184 |
-
if answer_start_index != -1:
|
| 185 |
-
extracted_answer = generated_text[answer_start_index + len("### Answer:\n"):].strip()
|
| 186 |
-
if 'positive' in extracted_answer.lower():
|
| 187 |
-
return 'positive'
|
| 188 |
-
elif 'negative' in extracted_answer.lower():
|
| 189 |
-
return 'negative'
|
| 190 |
-
return extracted_answer.split('\n')[0].strip() # Fallback for sentiment
|
| 191 |
-
return generated_text
|
| 192 |
-
elif task_type == "translation":
|
| 193 |
-
answer_start_index = generated_text.find("### French:\n")
|
| 194 |
-
if answer_start_index != -1:
|
| 195 |
-
extracted_answer = generated_text[answer_start_index + len("### French:\n"):].strip()
|
| 196 |
-
end_of_french = extracted_answer.find("###")
|
| 197 |
-
if end_of_french != -1:
|
| 198 |
-
extracted_answer = extracted_answer[:end_of_french].strip()
|
| 199 |
-
return extracted_answer
|
| 200 |
-
return generated_text
|
| 201 |
-
|
| 202 |
-
# --- Test Cases ---
|
| 203 |
-
print("Testing Sentiment Analysis:")
|
| 204 |
-
positive_review = "This movie was absolutely fantastic! The acting was superb and the story was captivating."
|
| 205 |
-
print(f"Review: {positive_review}")
|
| 206 |
-
print(f"Sentiment: {multi_task_inference(multi_task_model, tokenizer, positive_review, 'sentiment')}\n")
|
| 207 |
-
|
| 208 |
-
negative_review = "I found this film to be incredibly boring and predictable. A complete waste of time."
|
| 209 |
-
print(f"Review: {negative_review}")
|
| 210 |
-
print(f"Sentiment: {multi_task_inference(multi_task_model, tokenizer, negative_review, 'sentiment')}\n")
|
| 211 |
-
|
| 212 |
-
print("Testing English-French Translation:")
|
| 213 |
-
english_sentence_1 = "The quick brown fox jumps over the lazy dog."
|
| 214 |
-
print(f"English: {english_sentence_1}")
|
| 215 |
-
print(f"French: {multi_task_inference(multi_task_model, tokenizer, english_sentence_1, 'translation')}\n")
|
| 216 |
-
|
| 217 |
-
english_sentence_2 = "Life is beautiful."
|
| 218 |
-
print(f"English: {english_sentence_2}")
|
| 219 |
-
print(f"French: {multi_task_inference(multi_task_model, tokenizer, english_sentence_2, 'translation')}")
|
| 220 |
-
```
|
| 221 |
-
|
| 222 |
-
```
|
| 223 |
-
Testing Sentiment Analysis:
|
| 224 |
-
Review: This movie was absolutely fantastic! The acting was superb and the story was captivating.
|
| 225 |
-
Sentiment: positive
|
| 226 |
-
|
| 227 |
-
Review: I found this film to be incredibly boring and predictable. A complete waste of time.
|
| 228 |
-
Sentiment: negative
|
| 229 |
-
|
| 230 |
-
Testing English-French Translation:
|
| 231 |
-
English: The quick brown fox jumps over the lazy dog.
|
| 232 |
-
French: Le chien laissé derrière lui, il n'y a pas de fauve.
|
| 233 |
-
|
| 234 |
-
English: Life is beautiful.
|
| 235 |
-
French: La vie est beau.
|
| 236 |
-
```
|
| 237 |
-
|
| 238 |
-
This project demonstrates:
|
| 239 |
-
|
| 240 |
-
- ✅ True **multi-task inference** with LoRA
|
| 241 |
-
- ✅ No catastrophic forgetting
|
| 242 |
-
- ✅ No base model retraining
|
| 243 |
-
- ✅ Clean task separation via adapters
|
| 244 |
-
- ✅ Efficient GPU memory usage
|
| 245 |
-
|
| 246 |
-
This pattern scales naturally to **more tasks** (e.g. summarization, classification, safety).
|
| 247 |
-
|
| 248 |
```python
|
| 249 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 250 |
|
|
|
|
| 100 |
|
| 101 |
# Usage Example
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
```python
|
| 104 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 105 |
|