Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- FreedomIntelligence/medical-o1-reasoning-SFT
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model:
|
| 8 |
+
- unsloth/DeepSeek-R1-Distill-Llama-8B
|
| 9 |
+
pipeline_tag: text-generation
|
| 10 |
+
tags:
|
| 11 |
+
- unsloth
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# DeepSeek-R1 Medical Reasoning Model
|
| 15 |
+
|
| 16 |
+
This repository contains a **fine-tuned medical reasoning model** based on
|
| 17 |
+
[DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/unsloth/DeepSeek-R1-Distill-Llama-8B)
|
| 18 |
+
and trained on the [medical-o1-reasoning-SFT](https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT) dataset.
|
| 19 |
+
|
| 20 |
+
⚠️ **The uploaded file (`unsloth.Q8_0.gguf`) contains quantized weights** for efficient inference.
|
| 21 |
+
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
## 🔍 Model Overview
|
| 25 |
+
|
| 26 |
+
- **Base Model**: unsloth/DeepSeek-R1-Distill-Llama-8B
|
| 27 |
+
- **Training Method**: SFT (Supervised Fine-Tuning)
|
| 28 |
+
- **Domain**: Medical reasoning and clinical knowledge
|
| 29 |
+
- **Language**: English
|
| 30 |
+
- **Quantization**: Q8_0 (gguf format for efficient inference)
|
| 31 |
+
|
| 32 |
+
---
|
| 33 |
+
|
| 34 |
+
## 📚 Training Data
|
| 35 |
+
|
| 36 |
+
The model was fine-tuned on:
|
| 37 |
+
|
| 38 |
+
- **Dataset**: `FreedomIntelligence/medical-o1-reasoning-SFT`
|
| 39 |
+
- **Language**: English
|
| 40 |
+
- **Task**: Medical reasoning, clinical question-answering
|
| 41 |
+
|
| 42 |
+
---
|
| 43 |
+
|
| 44 |
+
## 🚀 Usage Example
|
| 45 |
+
|
| 46 |
+
> **Note:** The model is stored in `.gguf` format (quantized). You can load it using `unsloth` library.
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
from unsloth import FastLanguageModel
|
| 50 |
+
import torch
|
| 51 |
+
|
| 52 |
+
# Load the quantized GGUF model
|
| 53 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 54 |
+
"./unsloth.Q8_0.gguf",
|
| 55 |
+
max_seq_length=2048,
|
| 56 |
+
load_in_8bit=True, # optional depending on quantization
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
FastLanguageModel.for_inference(model)
|
| 60 |
+
|
| 61 |
+
def generate(model, prompt, max_new_tokens=200):
|
| 62 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 63 |
+
|
| 64 |
+
with torch.no_grad():
|
| 65 |
+
outputs = model.generate(
|
| 66 |
+
**inputs,
|
| 67 |
+
max_new_tokens=max_new_tokens,
|
| 68 |
+
do_sample=True,
|
| 69 |
+
temperature=0.7,
|
| 70 |
+
top_p=0.9,
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 74 |
+
|
| 75 |
+
# Example prompt
|
| 76 |
+
prompt = """### Instruction:
|
| 77 |
+
A patient presents with persistent chest pain and shortness of breath. What are possible differential diagnoses?
|
| 78 |
+
|
| 79 |
+
### Response:
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
print(generate(model, prompt))
|
| 83 |
+
|