--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Multiple non-calcified nodules in left lower lobe, ranging from 3-6mm. Follow-up CT scan recommended. - text: Heart size and mediastinal contours normal. Lungs clear, no consolidation or acute abnormality. No pleural effusion or pneumothorax. No acute osseous abnormalities. Small 0.5 cm calcified granuloma in right upper lobe, likely benign from prior infection. No acute cardiopulmonary disease. Incidental right upper lobe granuloma. No follow-up needed unless clinically indicated. nan - text: Patchy consolidation in RLL consistent with pneumonia. Recommend clinical follow-up. - text: Calcified granuloma in the left lower lobe, incidental finding. Findings consistent with COPD exacerbation. - text: Moderate pleural effusion and patchy consolidation in bilateral lung bases. metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: false --- # SetFit This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Classification head:** a OneVsRestClassifier instance - **Maximum Sequence Length:** 512 tokens ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("Moderate pleural effusion and patchy consolidation in bilateral lung bases.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 7 | 17.5143 | 53 | ### Training Hyperparameters - batch_size: (8, 8) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0096 | 1 | 0.1417 | - | | 0.4808 | 50 | 0.1824 | - | | 0.9615 | 100 | 0.1083 | - | | 1.4423 | 150 | 0.0817 | - | | 1.9231 | 200 | 0.0777 | - | | 2.4038 | 250 | 0.0636 | - | | 2.8846 | 300 | 0.0649 | - | | 3.3654 | 350 | 0.0603 | - | | 3.8462 | 400 | 0.0713 | - | | 4.3269 | 450 | 0.0507 | - | | 4.8077 | 500 | 0.0569 | - | | 5.2885 | 550 | 0.0553 | - | | 5.7692 | 600 | 0.0614 | - | | 6.25 | 650 | 0.0512 | - | | 6.7308 | 700 | 0.0559 | - | | 7.2115 | 750 | 0.0512 | - | | 7.6923 | 800 | 0.0464 | - | | 8.1731 | 850 | 0.0547 | - | | 8.6538 | 900 | 0.0455 | - | | 9.1346 | 950 | 0.0524 | - | | 9.6154 | 1000 | 0.0526 | - | ### Framework Versions - Python: 3.11.11 - SetFit: 1.1.2 - Sentence Transformers: 4.0.2 - Transformers: 4.51.2 - PyTorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```