End of training
Browse files- README.md +10 -10
- emissions.csv +1 -1
README.md
CHANGED
|
@@ -18,8 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 18 |
|
| 19 |
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
| 20 |
It achieves the following results on the evaluation set:
|
| 21 |
-
- Loss: 0.
|
| 22 |
-
- Accuracy: 0.
|
| 23 |
|
| 24 |
## Model description
|
| 25 |
|
|
@@ -39,8 +39,8 @@ More information needed
|
|
| 39 |
|
| 40 |
The following hyperparameters were used during training:
|
| 41 |
- learning_rate: 3e-05
|
| 42 |
-
- train_batch_size:
|
| 43 |
-
- eval_batch_size:
|
| 44 |
- seed: 42
|
| 45 |
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 46 |
- lr_scheduler_type: linear
|
|
@@ -50,16 +50,16 @@ The following hyperparameters were used during training:
|
|
| 50 |
|
| 51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 52 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
| 53 |
-
| 0.
|
| 54 |
-
| 0.
|
| 55 |
-
| 0.
|
| 56 |
-
| 0.
|
| 57 |
-
| 0.
|
| 58 |
|
| 59 |
|
| 60 |
### Framework versions
|
| 61 |
|
| 62 |
- Transformers 4.57.3
|
| 63 |
- Pytorch 2.9.1+cu128
|
| 64 |
-
- Datasets 4.4.
|
| 65 |
- Tokenizers 0.22.1
|
|
|
|
| 18 |
|
| 19 |
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
| 20 |
It achieves the following results on the evaluation set:
|
| 21 |
+
- Loss: 0.5053
|
| 22 |
+
- Accuracy: 0.8195
|
| 23 |
|
| 24 |
## Model description
|
| 25 |
|
|
|
|
| 39 |
|
| 40 |
The following hyperparameters were used during training:
|
| 41 |
- learning_rate: 3e-05
|
| 42 |
+
- train_batch_size: 32
|
| 43 |
+
- eval_batch_size: 32
|
| 44 |
- seed: 42
|
| 45 |
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 46 |
- lr_scheduler_type: linear
|
|
|
|
| 50 |
|
| 51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 52 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
| 53 |
+
| 0.6458 | 1.0 | 14962 | 0.6352 | 0.7394 |
|
| 54 |
+
| 0.4643 | 2.0 | 29924 | 0.5741 | 0.7702 |
|
| 55 |
+
| 0.5519 | 3.0 | 44886 | 0.5261 | 0.7922 |
|
| 56 |
+
| 0.3822 | 4.0 | 59848 | 0.5054 | 0.8111 |
|
| 57 |
+
| 0.344 | 5.0 | 74810 | 0.5053 | 0.8195 |
|
| 58 |
|
| 59 |
|
| 60 |
### Framework versions
|
| 61 |
|
| 62 |
- Transformers 4.57.3
|
| 63 |
- Pytorch 2.9.1+cu128
|
| 64 |
+
- Datasets 4.4.2
|
| 65 |
- Tokenizers 0.22.1
|
emissions.csv
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
| 2 |
-
2025-12-
|
|
|
|
| 1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
| 2 |
+
2025-12-27T02:30:50,codecarbon,053a0694-69e4-4f2a-b6b7-c48517c95402,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,13934.410282625999,0.6770843193932654,4.859081264726949e-05,42.5,598.0692513088488,755.7507977485657,0.16420767100260394,3.3485438799440677,2.919559131755385,6.432310682702044,Luxembourg,LUX,,,,Linux-6.8.0-90-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,224,Intel(R) Xeon(R) Platinum 8480+,4,4 x NVIDIA L40S,6.1661,49.7498,2015.3354606628418,machine,N,1.0
|