| {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7db0388e5800>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7db0388e58a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7db0388e5940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7db0388e59e0>", "_build": "<function ActorCriticPolicy._build at 0x7db0388e5a80>", "forward": "<function ActorCriticPolicy.forward at 0x7db0388e5b20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7db0388e5bc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7db0388e5c60>", "_predict": "<function ActorCriticPolicy._predict at 0x7db0388e5d00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7db0388e5da0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7db0388e5e40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7db0388e5ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7db03884cc00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1740145750715383532, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAB49r25npE+L3ajPWCwpb73R4q85QMyvQAAAAAAAAAADRh0vj1SeT+C7q6+NHHCvpwJor79pue7AAAAAAAAAACzZjo9CHRyP1o/MjrwLeC+WM73PZ7W1bwAAAAAAAAAAE1ETD2nOEA/nzzKvdYhnb5+GH+6CdG1PAAAAAAAAAAAmvsfvAsaSz95UAE8tKemvuePZT3jNKU8AAAAAAAAAACmK4O9m32FPcTNKT6C11y+Bg+xPVfyH7wAAAAAAAAAADPZUTz0DUY+9pKBvrb+n74BY4e+9mNhPQAAAAAAAAAAs60lvajZpz9doN++AqIEv6Gch7wFjBe+AAAAAAAAAADzN8i9gQNHPuI3kD0XQ3u+4H+qPBNfJjwAAAAAAAAAAABcn7yCK5g+J8O8PUHHY75IHCS9comEPAAAAAAAAAAA0N6Rvl8RSD9u8X2+f3XDvsVukr5AYd89AAAAAAAAAACzyrC93VkyPrNiFjvR3lS+dL2ivXqubzsAAAAAAAAAAJqv0jx7Hou6cHPatncetLExo6K6+4H9NQAAgD8AAIA/gNZgvbjE7buXdZ88XqyYPHOofT27D369AACAPwAAgD/wGYK+D1DcPpyNpD5VNlW+QhQSPd6qKD4AAAAAAAAAANogtb2bgJM/2UQgvhd2vr4fVra97WWkvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/zZf2K2rqMAWyUTSABjAF0lEdAln5Zof0VanV9lChoBkdAcQiYODrZ8WgHTQgBaAhHQJZ+n4VRDTl1fZQoaAZHQHHzwcYIjW1oB00CAWgIR0CWf3W3z+WGdX2UKGgGR0Btp/2PDHfeaAdNLwFoCEdAloAYduHerXV9lChoBkdAbU5NEgGKRGgHTTwBaAhHQJaAbzGxUvR1fZQoaAZHQHInE56t1ZFoB00NAWgIR0CWgQMqjJuEdX2UKGgGR0BxhKUILPUsaAdNGAFoCEdAloEgFcIJJHV9lChoBkdAcV6ML4N7SmgHTU8BaAhHQJaB1WNm16V1fZQoaAZHQHCjNgKF7D5oB00cAWgIR0CWgq78Nx2jdX2UKGgGR0BxGRAE+xGEaAdNMwFoCEdAloNGOdXkpHV9lChoBkdAcOslHBk7OmgHTTMBaAhHQJaD6GO+7Dl1fZQoaAZHQHFMzuSfUWloB00KAWgIR0CWg/thNM4+dX2UKGgGR0BxRSK1og3caAdNPQFoCEdAloSn1jAi3XV9lChoBkdAbj2UN8VpK2gHTQoBaAhHQJaE2MZP2wp1fZQoaAZHQHH+D6i0v5BoB00rAWgIR0CWhTZi/fwadX2UKGgGR0By94aVD8cdaAdL/GgIR0CWhYwi7kGSdX2UKGgGR0Byr2LhrFfiaAdL9mgIR0CWhreuV5bAdX2UKGgGR0Bym+78Nx2jaAdL7mgIR0CWhsrZamoBdX2UKGgGR0ByI+AMDwH8aAdL/WgIR0CWiJ6H0se5dX2UKGgGR0Bwr+lVLi++aAdNUwFoCEdAloi3vx6OYXV9lChoBkdAcdALhJiAlWgHTYEBaAhHQJaI+prDZUV1fZQoaAZHQHKTeCTUy59oB01AAWgIR0CWibfFJg9edX2UKGgGR0BzCJvIfbKzaAdNBAFoCEdAlonG/N7jUHV9lChoBkdAZkVYQJ5VwWgHTegDaAhHQJaKKQfZElV1fZQoaAZHQHBnMfms/6hoB01SAWgIR0CWimNyYG+sdX2UKGgGR0BxwCUbDMvAaAdNFQFoCEdAlorgVCXyAnV9lChoBkdAcGyhkAggYGgHTQoBaAhHQJaLSX5WRzR1fZQoaAZHQHKNgJgLJCBoB00oAWgIR0CWjAVrylN2dX2UKGgGR0BudpXp4bCKaAdNIgFoCEdAlozYDgZTAHV9lChoBkdAcAa6DoQnQmgHTSoBaAhHQJaM3rrxAjZ1fZQoaAZHQHGzJQHiWE9oB00vAWgIR0CWjexoZhrndX2UKGgGR0ByEfKOktVaaAdNPwFoCEdAlo374zrNW3V9lChoBkdAcJYV3EAHV2gHTQ8BaAhHQJaOPhjvuw51fZQoaAZHQHFWNSEUTL5oB00cAWgIR0CWjpxNIsiCdX2UKGgGR0BLRYTbnHNpaAdLzWgIR0CWj0gm7aqTdX2UKGgGR0ByRxUXHim3aAdL12gIR0CWj+YLb5/LdX2UKGgGR0BxPkgJTl1baAdNDgFoCEdAlpBcAJb+tXV9lChoBkdAcBrsVclgMWgHTQwBaAhHQJaRFUCJXQt1fZQoaAZHQHGWv9pAUtZoB01AAWgIR0CWkYiZv1lHdX2UKGgGR0BwXtDG96C2aAdNCgFoCEdAlpGvRJEpiXV9lChoBkdAcMqn5zo2XWgHTVMBaAhHQJaSK2uxKQJ1fZQoaAZHQHIyEFKTSstoB00fAWgIR0CWks1VHWjHdX2UKGgGR0ByJ7BJqZc+aAdNIQFoCEdAlpNGAPNFB3V9lChoBkdAb3h876pHZ2gHTRIBaAhHQJaTmQfZElV1fZQoaAZHQHDIsUAT7EZoB00uAWgIR0CWqG9C/oJRdX2UKGgGR0Bwaiq6vq1PaAdNDgFoCEdAlqjBpL26CnV9lChoBkdAb3f75VOsT2gHTSEBaAhHQJapbdRBNVR1fZQoaAZHQHJy8/hVENRoB00nAWgIR0CWqe83uNPydX2UKGgGR0BwizsyBTXKaAdNHwFoCEdAlqowxN7BwnV9lChoBkdAcpwr2QGOdWgHTXUBaAhHQJaquFuejEh1fZQoaAZHQHLD9u1ndwhoB00qAWgIR0CWq0+8Gs3idX2UKGgGR0Bymx7qptJnaAdNFgFoCEdAlqtf16E8JXV9lChoBkdAJ8vE87p3YGgHS+RoCEdAlqt2/Firk3V9lChoBkdAcdt47ihnJ2gHTT8BaAhHQJathzNliBp1fZQoaAZHQHJrZnYg7o1oB005AWgIR0CWrfYc/+sHdX2UKGgGR0Bx4Vv5xiobaAdNBwFoCEdAlq4hv3rUsnV9lChoBkdAcIljs2NvO2gHTRIBaAhHQJauyvcJtzl1fZQoaAZHQHFhk6xPfsNoB02NAWgIR0CWryfRNRFadX2UKGgGR0Bx5WrdWQwLaAdNPAFoCEdAlq8u8TSLInV9lChoBkdAbKTJNCZ4OmgHTQEBaAhHQJawNsSCe3B1fZQoaAZHQGw7fqgRK6FoB00RAWgIR0CWsGQq7ROUdX2UKGgGR0BzJd9hJAdGaAdNpQFoCEdAlrF2hmGucXV9lChoBkdAckqan752yWgHTSgBaAhHQJayYc3l0YF1fZQoaAZHQHAd//7zkIZoB0v/aAhHQJayj1BdD6Z1fZQoaAZHQGwTFYMfA9FoB00zAWgIR0CWsu4kNWludX2UKGgGR0Bv4SHh0hePaAdNFAFoCEdAlrMjYI0IknV9lChoBkdAcMGYGdI5HWgHTS8BaAhHQJazW20AtFt1fZQoaAZHQHG5cKw6hg5oB00iAWgIR0CWs6c2R7qqdX2UKGgGR0By9QqDsdDIaAdNgwFoCEdAlrR296C17nV9lChoBkdAcW4lYEGJN2gHTRoBaAhHQJa2EBltj1B1fZQoaAZHQHDIIrz5GjNoB00iAWgIR0CWth+i8FpxdX2UKGgGR0BySnMOf/WEaAdNNAFoCEdAlrY59NN8E3V9lChoBkdAcv8p0OmR/2gHTQIBaAhHQJa2XM5fdAR1fZQoaAZHQHE3SEtdzGRoB00XAWgIR0CWtuqslsxgdX2UKGgGR0BxCIqRU3n7aAdNMQFoCEdAlrdKpT/ACXV9lChoBkdAcK3PyCnP3WgHTQ4BaAhHQJa3rSjQAuJ1fZQoaAZHQG2pEyLyc1BoB007AWgIR0CWuQuYhMakdX2UKGgGR0ByJqT+vQnhaAdNBwFoCEdAlrmKABkqc3V9lChoBkdAcaxjm0VrRGgHS/loCEdAlrmw9/z8QHV9lChoBkdAb6vQRf4REmgHTSwBaAhHQJa5wP+XJHR1fZQoaAZHQHLXDxXnyNJoB00WAWgIR0CWuh+mFajfdX2UKGgGR0BwrSUOd5IIaAdNEwFoCEdAlrqIubqhUXV9lChoBkdAcL+hfBvaUWgHS/NoCEdAlrsOWnjyWnV9lChoBkdAcFs1Bt1p02gHTS0BaAhHQJa7fYVZcLV1fZQoaAZHQFQKWqtHQQdoB0vVaAhHQJa8FyR0U491fZQoaAZHQHN7t8uzyBloB00IAWgIR0CWvXDQqqffdX2UKGgGR0BulnKdQO4HaAdNIQFoCEdAlr4aHbh3q3V9lChoBkdAbjNpKSPluGgHTRoBaAhHQJa+39BKL891fZQoaAZHQG/TtQbdadNoB01PAWgIR0CWv47rcCYDdX2UKGgGR0BwB1xT850baAdNIQFoCEdAlsAXZf2K23V9lChoBkdAbK5eTmnwX2gHTTIBaAhHQJbAIZqEeyR1fZQoaAZHQFHJh3qzJIVoB0ueaAhHQJbBC1OTJQt1fZQoaAZHQHGaN+XqqwRoB0v4aAhHQJbBE3PzFuN1fZQoaAZHQG3GIGpuMuRoB00SAWgIR0CWwbylN1yOdX2UKGgGR0Bvh7DEWIoFaAdNOwFoCEdAlsJ9ECvHLnV9lChoBkdAa0y+5e7cwmgHTRMCaAhHQJbC84iosI51fZQoaAZHQHJBzaK1og5oB00MAWgIR0CWw0MFEAo5dX2UKGgGR0Bs0iNEPUayaAdNIAFoCEdAlsNIcinpCHV9lChoBkdAckyWfbsWwmgHTTIBaAhHQJbDV+w1R+B1fZQoaAZHQHBpbxusLfFoB00lAWgIR0CWxERxcVxkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |