File size: 5,296 Bytes
bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 e9914e9 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 b41ea7a bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 b41ea7a cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 e9914e9 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 aa94d75 bdd2db4 cc87b07 bdd2db4 50ea01d cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 50ea01d cc87b07 e9914e9 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 bdd2db4 cc87b07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
license: apache-2.0
pipeline_tag: zero-shot-image-classification
tags:
- datology
- clip
- vision
- OpenCLIP
- datacomp
- zero-shot-classification
---
# DatologyAI CLIP Classification Optimized ViT-B/32
**DatologyAI CLIP** is a state-of-the-art contrastive vision-language model that achieves superior performance through advanced data curation alone, without any architectural or training modifications. This classification-optimized ViT-B/32 model outperforms SigLIP2, MetaCLIP, and DFN on zero-shot classification benchmarks.
## Model Description
DatologyAI's CLIP model demonstrates that careful data curation can drive state-of-the-art performance without modifications to model architecture or training paradigms. Key achievements include:
- **76.91% ImageNet1k accuracy** (vs 74.0% for SigLIP2)
- **8x training efficiency** compared to standard approaches
- Trained on 13B curated image-text pairs from DataComp
- Standard CLIP architecture and training procedure
## Intended Uses
You can use this model for zero-shot image classification or as a vision encoder for VLMs and other vision tasks.
### Zero-shot Image Classification
```python
import torch
from PIL import Image
import open_clip
# Load model and preprocessing
model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:DatologyAI/cls-opt-vit-b-32')
tokenizer = open_clip.get_tokenizer('hf-hub:DatologyAI/cls-opt-vit-b-32')
# Load image
image = preprocess(Image.open("path/to/image.jpg")).unsqueeze(0)
# Define candidate labels
labels = ["a dog", "a cat", "a bird"]
text = tokenizer(labels)
# Run inference
with torch.no_grad():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
# Normalize features
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
# Calculate similarity
similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)
# Get predictions
values, indices = similarity[0].topk(3)
for value, index in zip(values, indices):
print(f"{labels[index]}: {value.item():.2%}")
```
### Image Encoding
```python
import torch
from PIL import Image
import open_clip
# Load model
model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:DatologyAI/cls-opt-vit-b-32')
model.eval()
# Process image
image = preprocess(Image.open("path/to/image.jpg")).unsqueeze(0)
# Extract features
with torch.no_grad():
image_features = model.encode_image(image)
print(f"Feature shape: {image_features.shape}") # [1, 512]
```
## Training Procedure
DatologyAI's training pipeline focuses on sophisticated data curation techniques including:
1. **Improved target distribution matching** - Task-specific alignment of image features for classification
2. **Enhanced synthetic data generation** - Optimized caption generation for classification tasks
3. **Predictive metrics for curation quality** - Rapid iteration without full model training
The model uses standard CLIP training objectives with no architectural modifications.
## Training Data
The model was trained on 13B image-text (multi-epoch) curated from the **DataComp-XL** dataset using DatologyAI's proprietary curation pipeline. The curation process selected high-quality, classification-relevant subsets from the 10B available pairs in DataComp-XL.
## Evaluation Results
### Zero-shot Classification Performance
| Benchmark | DatologyAI | SigLIP2 | MetaCLIP |
|-----------|------------|---------|----------|
| ImageNet1k | **76.91%** | 74.0% | 67.7% |
| ImageNetv2 | **70.2%** | 67.1% | 60.4% |
### Training Efficiency
- Matches SigLIP2 performance with only **5B samples** (87.5% compute reduction)
- Matches MetaCLIP performance with only **1B samples** (92% compute reduction)
Full details see [blog post]().
## Model Details
- **Developed by:** DatologyAI
- **Model type:** CLIP (Contrastive Language-Image Pre-training)
- **Architecture:** Vision Transformer B/32
- **License:** Apache 2.0
- **Training framework:** OpenCLIP 2.24.0
## Technical Specifications
### Model Architecture
- **Vision Encoder:** ViT-B/32 (86M parameters)
- Patch size: 32×32
- Image size: 224×224
- Embedding dimension: 512
- **Text Encoder:** 12-layer Transformer
- Context length: 77 tokens
- Vocabulary size: 49,408 (BPE tokenizer)
### Training Configuration
- **Optimizer:** AdamW (β1=0.9, β2=0.98, ε=1e-6)
- **Learning rate:** 5.0e-04 with cosine schedule
- **Weight decay:** 0.1
- **Batch size:** 32,768
- **Training samples:** 13B image-text pairs
- **Hardware:** Distributed training on H100 GPUs
## Citation
If you use this model, please cite:
```bibtex
@article{datologyai2025clip,
title={CLIP Gets a Data Upgrade: Outperforming SoTA with Improved Data Curation Only},
author={DatologyAI Team},
journal={DatologyAI Blog},
year={2025},
url={https://datologyai.com/blog/clip-data-upgrade}
}
```
## Additional Information
For more details on our data curation methodology and comprehensive benchmark results, please visit our [blog post](https://datologyai.com/blog/clip-data-upgrade).
**Contact:** [[email protected]](mailto:[email protected])
## Model Card Contact
DatologyAI Team - [[email protected]](mailto:[email protected]) |