--- library_name: peft license: mit base_model: THUDM/GLM-4-32B-0414 tags: - axolotl - generated_from_trainer datasets: - anthracite-core/magnum-v5-sft-proto-glm4-instruct-rev1 model-index: - name: magnum-v5-sft-prototype-glm4-32b-lora results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0` ```yaml base_model: THUDM/GLM-4-32B-0414 #base_model_ignore_patterns: "*/*" # optionally might have model_type or tokenizer_type model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer # Automatically upload checkpoint and final model to HF hub_model_id: anthracite-core/magnum-v5-sft-prototype-glm4-32b-lora hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: anthracite-core/magnum-v5-sft-proto-glm4-instruct-rev1 ds_type: parquet type: shuffle_merged_datasets: true dataset_prepared_path: ./data/magnum-32b-data val_set_size: 0.01 output_dir: ./data/32b-lora-out plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin #liger_rope: false liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true cut_cross_entropy: true sequence_len: 32768 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 128 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: peft_use_rslora: true lora_modules_to_save: - embed_tokens - lm_head wandb_project: 32b-magnum-lora wandb_entity: wandb_watch: wandb_name: run4-Lora-0.001-clip wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 2 optimizer: paged_ademamix_8bit lr_scheduler: cosine learning_rate: 2e-4 max_grad_norm: 0.001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 40 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: saves_per_epoch: 2 debug: deepspeed: ./deepspeed_configs/zero3_bf16.json weight_decay: 0.01 fsdp: fsdp_config: special_tokens: ```

# magnum-v5-sft-prototype-glm4-32b-lora This model is a fine-tuned version of [THUDM/GLM-4-32B-0414](https://huggingface.co/THUDM/GLM-4-32B-0414) on the anthracite-core/magnum-v5-sft-proto-glm4-instruct-rev1 dataset. It achieves the following results on the evaluation set: - Loss: 1.1075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Use paged_ademamix_8bit and the args are: No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 40 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3541 | 0.0024 | 1 | 1.3336 | | 1.1718 | 0.2503 | 103 | 1.1633 | | 1.1976 | 0.5006 | 206 | 1.1460 | | 1.095 | 0.7509 | 309 | 1.1339 | | 1.1076 | 1.0 | 412 | 1.1213 | | 1.1063 | 1.2503 | 515 | 1.1128 | | 1.1214 | 1.5006 | 618 | 1.1089 | | 1.0286 | 1.7509 | 721 | 1.1075 | ### Framework versions - PEFT 0.15.1 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1