Upload processor
Browse files- preprocessor_config.json +3 -1
- processing_evabyte.py +287 -0
- processor_config.json +6 -0
- tokenizer_config.json +2 -0
preprocessor_config.json
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
{
|
| 2 |
"auto_map": {
|
| 3 |
-
"AutoImageProcessor": "image_processing_evabyte.EvaByteImageProcessor"
|
|
|
|
| 4 |
},
|
| 5 |
"do_convert_rgb": true,
|
| 6 |
"do_resize": true,
|
|
@@ -9,6 +10,7 @@
|
|
| 9 |
"jpeg_restart_marker_blocks": 1,
|
| 10 |
"jpeg_streamtype": 2,
|
| 11 |
"jpeg_subsampling": "4:2:0",
|
|
|
|
| 12 |
"resample": 1,
|
| 13 |
"size": {
|
| 14 |
"longest_edge": 384
|
|
|
|
| 1 |
{
|
| 2 |
"auto_map": {
|
| 3 |
+
"AutoImageProcessor": "image_processing_evabyte.EvaByteImageProcessor",
|
| 4 |
+
"AutoProcessor": "processing_evabyte.EvaByteProcessor"
|
| 5 |
},
|
| 6 |
"do_convert_rgb": true,
|
| 7 |
"do_resize": true,
|
|
|
|
| 10 |
"jpeg_restart_marker_blocks": 1,
|
| 11 |
"jpeg_streamtype": 2,
|
| 12 |
"jpeg_subsampling": "4:2:0",
|
| 13 |
+
"processor_class": "EvaByteProcessor",
|
| 14 |
"resample": 1,
|
| 15 |
"size": {
|
| 16 |
"longest_edge": 384
|
processing_evabyte.py
ADDED
|
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
"""
|
| 3 |
+
Processor class for EvaByte.
|
| 4 |
+
"""
|
| 5 |
+
import base64
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
|
| 8 |
+
import requests
|
| 9 |
+
import os
|
| 10 |
+
import PIL
|
| 11 |
+
from PIL import Image
|
| 12 |
+
|
| 13 |
+
from typing import List, Optional, Union
|
| 14 |
+
|
| 15 |
+
from transformers.feature_extraction_utils import BatchFeature
|
| 16 |
+
from transformers.image_utils import ImageInput, is_valid_image
|
| 17 |
+
from transformers.processing_utils import ProcessorMixin
|
| 18 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
| 19 |
+
from transformers.utils import TensorType, to_py_obj
|
| 20 |
+
|
| 21 |
+
def fetch_image(image: Union[str, "PIL.Image.Image"]) -> Image.Image:
|
| 22 |
+
image_obj = None
|
| 23 |
+
if isinstance(image, Image.Image):
|
| 24 |
+
image_obj = image
|
| 25 |
+
elif image.startswith("http://") or image.startswith("https://"):
|
| 26 |
+
image_obj = Image.open(BytesIO(requests.get(image, timeout=None).content))
|
| 27 |
+
elif os.path.isfile(image):
|
| 28 |
+
image_obj = Image.open(image)
|
| 29 |
+
elif image.startswith("data:image/"):
|
| 30 |
+
image = image.split(",")[1]
|
| 31 |
+
# Try to load as base64
|
| 32 |
+
try:
|
| 33 |
+
b64 = base64.decodebytes(image.encode())
|
| 34 |
+
image = PIL.Image.open(BytesIO(b64))
|
| 35 |
+
except Exception as e:
|
| 36 |
+
raise ValueError(
|
| 37 |
+
f"Incorrect image source. Must be a valid URL starting with `http://` or `https://`, a valid path to an image file, or a base64 encoded string. Got {image}. Failed with {e}"
|
| 38 |
+
)
|
| 39 |
+
else:
|
| 40 |
+
image_obj = Image.open(image)
|
| 41 |
+
if image_obj is None:
|
| 42 |
+
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
|
| 43 |
+
|
| 44 |
+
return image_obj
|
| 45 |
+
|
| 46 |
+
def is_url(val) -> bool:
|
| 47 |
+
return isinstance(val, str) and val.startswith("http")
|
| 48 |
+
|
| 49 |
+
def is_file(val) -> bool:
|
| 50 |
+
return isinstance(val, str) and os.path.isfile(val)
|
| 51 |
+
|
| 52 |
+
def is_image_or_image_url(elem):
|
| 53 |
+
return is_url(elem) or is_valid_image(elem) or is_file(elem)
|
| 54 |
+
|
| 55 |
+
vl_chat_template = """
|
| 56 |
+
{{- bos_token }}
|
| 57 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 58 |
+
{%- set system_message = messages[0]['content'] %}
|
| 59 |
+
{%- set messages = messages[1:] %}
|
| 60 |
+
{%- else %}
|
| 61 |
+
{%- set system_message = "" %}
|
| 62 |
+
{%- endif %}
|
| 63 |
+
|
| 64 |
+
{{- '<|start_header_id|>system<|end_header_id|>\n\n' + system_message + '<|eot_id|>'}}
|
| 65 |
+
|
| 66 |
+
{%- for message in messages %}
|
| 67 |
+
{%- if (message['role'] != 'user') and (message['role'] != 'assistant') %}
|
| 68 |
+
{{- raise_exception('Conversation roles must be user or assistant') }}
|
| 69 |
+
{%- endif %}
|
| 70 |
+
|
| 71 |
+
{%- if message['content'] is string %}
|
| 72 |
+
{{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] + '<|eot_id|>' }}
|
| 73 |
+
{%- else %}
|
| 74 |
+
{{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' }}
|
| 75 |
+
{%- for content in message['content'] %}
|
| 76 |
+
{%- if content['type'] == 'image' %}
|
| 77 |
+
{{- '<image_placeholder>\n' }}
|
| 78 |
+
{%- elif content['type'] == 'text' %}
|
| 79 |
+
{{- content['text'] }}
|
| 80 |
+
{%- endif %}
|
| 81 |
+
{%- endfor %}
|
| 82 |
+
{{- '<|eot_id|>' }}
|
| 83 |
+
{%- endif %}
|
| 84 |
+
{%- endfor %}
|
| 85 |
+
|
| 86 |
+
{%- if add_generation_prompt %}
|
| 87 |
+
{{- '<|start_header_id|>' + 'assistant' + '<|end_header_id|>\n\n' }}
|
| 88 |
+
{%- endif %}
|
| 89 |
+
"""
|
| 90 |
+
|
| 91 |
+
class EvaByteProcessor(ProcessorMixin):
|
| 92 |
+
r"""
|
| 93 |
+
Constructs a EvaByte processor which wraps a EvaByte image processor and a EvaByte tokenizer into a single processor.
|
| 94 |
+
|
| 95 |
+
[`EvaByteProcessor`] offers all the functionalities of [`EvaByteImageProcessor`] and [`EvaByteTokenizer`]. See the
|
| 96 |
+
[`~EvaByteProcessor.__call__`] and [`~EvaByteProcessor.decode`] for more information.
|
| 97 |
+
|
| 98 |
+
Args:
|
| 99 |
+
image_processor ([`EvaByteImageProcessor`], *optional*):
|
| 100 |
+
The image processor is a required input.
|
| 101 |
+
tokenizer ([`EvaByteTokenizer`], *optional*):
|
| 102 |
+
The tokenizer is a required input.
|
| 103 |
+
"""
|
| 104 |
+
|
| 105 |
+
attributes = ["image_processor", "tokenizer"]
|
| 106 |
+
image_processor_class = "AutoImageProcessor"
|
| 107 |
+
tokenizer_class = "AutoTokenizer"
|
| 108 |
+
|
| 109 |
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
| 110 |
+
if image_processor is None:
|
| 111 |
+
raise ValueError("You need to specify an `image_processor`.")
|
| 112 |
+
if tokenizer is None:
|
| 113 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
| 114 |
+
|
| 115 |
+
super().__init__(image_processor, tokenizer)
|
| 116 |
+
self.t2v_token_id = self.tokenizer.convert_tokens_to_ids("<t2v_token>")
|
| 117 |
+
self.v2t_token_id = self.tokenizer.convert_tokens_to_ids("<v2t_token>")
|
| 118 |
+
self.image_placeholder = "<image_placeholder>"
|
| 119 |
+
self.vl_chat_template = vl_chat_template
|
| 120 |
+
|
| 121 |
+
def __call__(
|
| 122 |
+
self,
|
| 123 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
| 124 |
+
images: ImageInput = None,
|
| 125 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 126 |
+
strip_ending_sentinel: bool = False,
|
| 127 |
+
encode_only: bool = False,
|
| 128 |
+
**kwargs
|
| 129 |
+
) -> Union[BatchFeature, List[List[int]]]:
|
| 130 |
+
# processing pipeline:
|
| 131 |
+
# 1. read images or videos from paths
|
| 132 |
+
# 2. use image_processor to convert images / videos to byte streams
|
| 133 |
+
if images is not None:
|
| 134 |
+
if isinstance(images, bytes):
|
| 135 |
+
image_bytes_list = [[images]]
|
| 136 |
+
elif isinstance(images, list) and isinstance(images[0], bytes):
|
| 137 |
+
image_bytes_list = [images]
|
| 138 |
+
elif isinstance(images, list) and isinstance(images[0], list) and isinstance(images[0][0], bytes):
|
| 139 |
+
image_bytes_list = images
|
| 140 |
+
else:
|
| 141 |
+
if is_image_or_image_url(images):
|
| 142 |
+
images = [[images]]
|
| 143 |
+
elif isinstance(images, list) and is_image_or_image_url(images[0]):
|
| 144 |
+
images = [images]
|
| 145 |
+
elif (
|
| 146 |
+
not isinstance(images, list)
|
| 147 |
+
and not isinstance(images[0], list)
|
| 148 |
+
and not is_image_or_image_url(images[0][0])
|
| 149 |
+
):
|
| 150 |
+
raise ValueError(
|
| 151 |
+
"Invalid input images. Please provide a single image or a list of images or a list of list of images."
|
| 152 |
+
)
|
| 153 |
+
# Load images if they are URLs
|
| 154 |
+
images = [[fetch_image(im) if is_url(im) or is_file(im) else im for im in sample] for sample in images]
|
| 155 |
+
image_bytes_list = self.image_processor(images=images, **kwargs)
|
| 156 |
+
|
| 157 |
+
if not isinstance(text, list):
|
| 158 |
+
text = [text]
|
| 159 |
+
assert len(text) == 1, "Only support batch size 1 for now"
|
| 160 |
+
assert len(text) == len(image_bytes_list), "text and image_bytes_list must have the same length"
|
| 161 |
+
# TODO: invoke SequenceFeatureExtractor to get batched inputs
|
| 162 |
+
|
| 163 |
+
# 3. tokenize the text and put images / videos byte streams into the placeholders
|
| 164 |
+
# surrounded by special tokens like "<image>" and "</image>"
|
| 165 |
+
batch_input_ids = []
|
| 166 |
+
if not encode_only:
|
| 167 |
+
batch_attention_mask = []
|
| 168 |
+
else:
|
| 169 |
+
batch_attention_mask = None
|
| 170 |
+
|
| 171 |
+
for t, image_bytes in zip(text, image_bytes_list):
|
| 172 |
+
text_splits = t.split(self.image_placeholder)
|
| 173 |
+
if len(text_splits) != len(image_bytes) + 1:
|
| 174 |
+
raise ValueError(
|
| 175 |
+
f"The number of image tokens should be equal to the number of images, "
|
| 176 |
+
f"but got {len(text_splits)} and {len(image_bytes) + 1}"
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
input_ids = [self.tokenizer.bos_token_id]
|
| 180 |
+
for i, text_part in enumerate(text_splits):
|
| 181 |
+
# each text part must be non-empty because we added markers around placeholders
|
| 182 |
+
split_tokens = self.tokenizer.encode(text_part, add_special_tokens=False)
|
| 183 |
+
input_ids.extend(split_tokens)
|
| 184 |
+
# Add image bytes after each text part except the last one
|
| 185 |
+
if i < len(image_bytes):
|
| 186 |
+
input_ids.append(self.t2v_token_id)
|
| 187 |
+
input_ids.extend([b + self.tokenizer.offset for b in image_bytes[i]])
|
| 188 |
+
input_ids.append(self.v2t_token_id)
|
| 189 |
+
|
| 190 |
+
if strip_ending_sentinel and (input_ids[-1] in [self.t2v_token_id, self.v2t_token_id]):
|
| 191 |
+
input_ids = input_ids[:-1]
|
| 192 |
+
|
| 193 |
+
batch_input_ids.append(input_ids)
|
| 194 |
+
if not encode_only:
|
| 195 |
+
batch_attention_mask.append([1] * len(input_ids))
|
| 196 |
+
|
| 197 |
+
if not encode_only:
|
| 198 |
+
# 4. return batch of features
|
| 199 |
+
inputs = BatchFeature({
|
| 200 |
+
"input_ids": batch_input_ids,
|
| 201 |
+
"attention_mask": batch_attention_mask
|
| 202 |
+
}, tensor_type=return_tensors)
|
| 203 |
+
return inputs
|
| 204 |
+
# # Pad sequences
|
| 205 |
+
# padded_inputs = self.tokenizer.pad(
|
| 206 |
+
# {"input_ids": batch_input_ids},
|
| 207 |
+
# padding=True,
|
| 208 |
+
# return_attention_mask=True,
|
| 209 |
+
# return_tensors=return_tensors,
|
| 210 |
+
# )
|
| 211 |
+
# return BatchFeature(data=padded_inputs)
|
| 212 |
+
else:
|
| 213 |
+
return batch_input_ids
|
| 214 |
+
|
| 215 |
+
def image_tokens_to_bytes(self, image_token_ids, jpeg_quality=None):
|
| 216 |
+
image_bytes = bytes([token_id - self.tokenizer.offset for token_id in image_token_ids])
|
| 217 |
+
image_bytes = self.image_processor.jpeg_merge_qtables(image_bytes, jpeg_quality)
|
| 218 |
+
return image_bytes
|
| 219 |
+
|
| 220 |
+
def batch_decode(self, sequences, **kwargs):
|
| 221 |
+
"""
|
| 222 |
+
This method forwards all its arguments to EvaByteTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 223 |
+
refer to the docstring of this method for more information.
|
| 224 |
+
"""
|
| 225 |
+
rets = [self.decode(seq, **kwargs) for seq in sequences]
|
| 226 |
+
return tuple(map(list, zip(*rets)))
|
| 227 |
+
|
| 228 |
+
def decode(self, token_ids, **kwargs):
|
| 229 |
+
"""
|
| 230 |
+
Decodes a sequence of input_ids, handling image tokens separately.
|
| 231 |
+
Returns a tuple of (decoded_text, images), where images is a list of bytes.
|
| 232 |
+
"""
|
| 233 |
+
if kwargs and "jpeg_quality" in kwargs:
|
| 234 |
+
kwargs = kwargs.copy()
|
| 235 |
+
jpeg_quality = kwargs.pop("jpeg_quality")
|
| 236 |
+
else:
|
| 237 |
+
jpeg_quality = None
|
| 238 |
+
|
| 239 |
+
token_ids = to_py_obj(token_ids)
|
| 240 |
+
# Find indices of t2v_token_id and v2t_token_id
|
| 241 |
+
t2v_indices = [i for i, token_id in enumerate(token_ids) if token_id == self.t2v_token_id]
|
| 242 |
+
v2t_indices = [i for i, token_id in enumerate(token_ids) if token_id == self.v2t_token_id]
|
| 243 |
+
|
| 244 |
+
# Check for correct pairing of t2v and v2t tokens
|
| 245 |
+
if len(t2v_indices) != len(v2t_indices):
|
| 246 |
+
raise ValueError("Mismatched number of t2v and v2t tokens in token_ids: {} and {}".format(t2v_indices, v2t_indices))
|
| 247 |
+
|
| 248 |
+
# Ensure t2v and v2t tokens are in the correct order
|
| 249 |
+
for t2v_idx, v2t_idx in zip(t2v_indices, v2t_indices):
|
| 250 |
+
if t2v_idx >= v2t_idx:
|
| 251 |
+
raise ValueError("Found t2v_token_id after v2t_token_id in token_ids")
|
| 252 |
+
|
| 253 |
+
# Initialize the start index
|
| 254 |
+
images = []
|
| 255 |
+
decoded_text = ""
|
| 256 |
+
|
| 257 |
+
start = 0
|
| 258 |
+
# Iterate over pairs of t2v and v2t indices
|
| 259 |
+
for t2v_idx, v2t_idx in zip(t2v_indices, v2t_indices):
|
| 260 |
+
# Decode text tokens before the image
|
| 261 |
+
text_token_ids = token_ids[start:t2v_idx]
|
| 262 |
+
if len(text_token_ids) > 0:
|
| 263 |
+
decoded_text += self.tokenizer.decode(text_token_ids, **kwargs)
|
| 264 |
+
|
| 265 |
+
# Insert image placeholder
|
| 266 |
+
decoded_text += self.image_placeholder
|
| 267 |
+
|
| 268 |
+
# Extract image tokens and convert them to bytes
|
| 269 |
+
image_token_ids = token_ids[t2v_idx + 1 : v2t_idx]
|
| 270 |
+
image_bytes = self.image_tokens_to_bytes(image_token_ids, jpeg_quality)
|
| 271 |
+
images.append(image_bytes)
|
| 272 |
+
|
| 273 |
+
# Update the start index to the token after v2t_token_id
|
| 274 |
+
start = v2t_idx + 1
|
| 275 |
+
|
| 276 |
+
# Decode any remaining text tokens after the last image
|
| 277 |
+
if start < len(token_ids):
|
| 278 |
+
text_token_ids = token_ids[start:]
|
| 279 |
+
decoded_text += self.tokenizer.decode(text_token_ids, **kwargs)
|
| 280 |
+
|
| 281 |
+
return decoded_text, images
|
| 282 |
+
|
| 283 |
+
@property
|
| 284 |
+
def model_input_names(self):
|
| 285 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 286 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 287 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
processor_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_evabyte.EvaByteProcessor"
|
| 4 |
+
},
|
| 5 |
+
"processor_class": "EvaByteProcessor"
|
| 6 |
+
}
|
tokenizer_config.json
CHANGED
|
@@ -575,6 +575,7 @@
|
|
| 575 |
"<extra_id_63>"
|
| 576 |
],
|
| 577 |
"auto_map": {
|
|
|
|
| 578 |
"AutoTokenizer": [
|
| 579 |
"tokenization_evabyte.EvaByteTokenizer",
|
| 580 |
null
|
|
@@ -588,6 +589,7 @@
|
|
| 588 |
"extra_special_tokens": {},
|
| 589 |
"model_max_length": 1000000000000000019884624838656,
|
| 590 |
"pad_token": "<pad>",
|
|
|
|
| 591 |
"sep_token": "<eos>",
|
| 592 |
"tokenizer_class": "EvaByteTokenizer",
|
| 593 |
"unk_token": "<unk>"
|
|
|
|
| 575 |
"<extra_id_63>"
|
| 576 |
],
|
| 577 |
"auto_map": {
|
| 578 |
+
"AutoProcessor": "processing_evabyte.EvaByteProcessor",
|
| 579 |
"AutoTokenizer": [
|
| 580 |
"tokenization_evabyte.EvaByteTokenizer",
|
| 581 |
null
|
|
|
|
| 589 |
"extra_special_tokens": {},
|
| 590 |
"model_max_length": 1000000000000000019884624838656,
|
| 591 |
"pad_token": "<pad>",
|
| 592 |
+
"processor_class": "EvaByteProcessor",
|
| 593 |
"sep_token": "<eos>",
|
| 594 |
"tokenizer_class": "EvaByteTokenizer",
|
| 595 |
"unk_token": "<unk>"
|