Update model and kernels for training support
Browse files- eva.py +22 -17
- eva_agg_kernel.py +1349 -52
- eva_prep_kv_kernel.py +686 -26
- eva_pt_ref.py +1 -3
- modeling_evabyte.py +16 -196
eva.py
CHANGED
|
@@ -2,8 +2,8 @@ from typing import Dict, Optional, Tuple, List, Any, Union
|
|
| 2 |
import torch
|
| 3 |
from torch import nn
|
| 4 |
import torch.nn.functional as F
|
| 5 |
-
from .eva_agg_kernel import
|
| 6 |
-
from .eva_prep_kv_kernel import
|
| 7 |
try:
|
| 8 |
import triton
|
| 9 |
USE_TRITON_IMPL = True
|
|
@@ -129,10 +129,10 @@ class EvaAttention(nn.Module):
|
|
| 129 |
assert not output_attentions
|
| 130 |
bsz, q_len, _ = hidden_states.size()
|
| 131 |
|
| 132 |
-
if use_cache
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
|
| 137 |
# infer the model's running mode
|
| 138 |
is_prefilling = use_cache and past_key_value.get_seq_length(self.layer_idx) == 0
|
|
@@ -141,13 +141,16 @@ class EvaAttention(nn.Module):
|
|
| 141 |
if is_prefilling:
|
| 142 |
assert len(attention_mask) == 2
|
| 143 |
window_mask, intra_chunk_mask = attention_mask
|
| 144 |
-
|
| 145 |
elif is_decoding:
|
| 146 |
assert len(attention_mask) == 3
|
| 147 |
-
window_mask, intra_chunk_mask,
|
| 148 |
else:
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
############################################
|
| 153 |
# compute q, k, v from hidden states
|
|
@@ -201,7 +204,7 @@ class EvaAttention(nn.Module):
|
|
| 201 |
# k/v: [b, h, w, d]
|
| 202 |
# rfa_k/rfa_v: [b, h, w//c, d]
|
| 203 |
# 3. in forward inference; the seq_len is already divisible
|
| 204 |
-
rfa_k, rfa_v =
|
| 205 |
dump_k, dump_v,
|
| 206 |
self.adaptive_mu_k, self.adaptive_phi,
|
| 207 |
dump_rf_mask, self.head_dim_scaling, self.chunk_size
|
|
@@ -227,10 +230,11 @@ class EvaAttention(nn.Module):
|
|
| 227 |
# q: [b, h, n, d]
|
| 228 |
# k/v: [b, h, n, d]
|
| 229 |
# rfa_k/rfa_v: [b, h, n // c, d]
|
| 230 |
-
attn_output =
|
| 231 |
q, s_k, s_v,
|
| 232 |
rfa_k, rfa_v,
|
| 233 |
-
singleton_mask,
|
|
|
|
| 234 |
)
|
| 235 |
elif is_decoding:
|
| 236 |
# 2. in decoding, the input shape is
|
|
@@ -258,8 +262,8 @@ class EvaAttention(nn.Module):
|
|
| 258 |
agg_k = torch.cat([s_k, rfa_k[..., :num_windows_seen_so_far * self.chunks_per_window, :]], dim=-2)
|
| 259 |
agg_v = torch.cat([s_v, rfa_v[..., :num_windows_seen_so_far * self.chunks_per_window, :]], dim=-2)
|
| 260 |
if singleton_mask is not None:
|
| 261 |
-
assert
|
| 262 |
-
attn_mask = torch.cat([singleton_mask,
|
| 263 |
else:
|
| 264 |
attn_mask = singleton_mask
|
| 265 |
else:
|
|
@@ -275,10 +279,11 @@ class EvaAttention(nn.Module):
|
|
| 275 |
)
|
| 276 |
else:
|
| 277 |
# 3. in single-forward inference
|
| 278 |
-
attn_output =
|
| 279 |
q, s_k, s_v,
|
| 280 |
rfa_k, rfa_v,
|
| 281 |
-
singleton_mask,
|
|
|
|
| 282 |
)
|
| 283 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 284 |
raise ValueError(
|
|
|
|
| 2 |
import torch
|
| 3 |
from torch import nn
|
| 4 |
import torch.nn.functional as F
|
| 5 |
+
from .eva_agg_kernel import eva_agg_func_triton
|
| 6 |
+
from .eva_prep_kv_kernel import eva_prep_kv_func_triton
|
| 7 |
try:
|
| 8 |
import triton
|
| 9 |
USE_TRITON_IMPL = True
|
|
|
|
| 129 |
assert not output_attentions
|
| 130 |
bsz, q_len, _ = hidden_states.size()
|
| 131 |
|
| 132 |
+
if use_cache:
|
| 133 |
+
if past_key_value is None:
|
| 134 |
+
raise ValueError
|
| 135 |
+
assert isinstance(attention_mask, tuple)
|
| 136 |
|
| 137 |
# infer the model's running mode
|
| 138 |
is_prefilling = use_cache and past_key_value.get_seq_length(self.layer_idx) == 0
|
|
|
|
| 141 |
if is_prefilling:
|
| 142 |
assert len(attention_mask) == 2
|
| 143 |
window_mask, intra_chunk_mask = attention_mask
|
| 144 |
+
chunk_mask = None
|
| 145 |
elif is_decoding:
|
| 146 |
assert len(attention_mask) == 3
|
| 147 |
+
window_mask, intra_chunk_mask, chunk_mask = attention_mask
|
| 148 |
else:
|
| 149 |
+
if attention_mask is not None:
|
| 150 |
+
assert isinstance(attention_mask, tuple) and len(attention_mask) == 3
|
| 151 |
+
window_mask, chunk_mask, intra_chunk_mask = attention_mask
|
| 152 |
+
else:
|
| 153 |
+
window_mask, chunk_mask, intra_chunk_mask = None, None, None
|
| 154 |
|
| 155 |
############################################
|
| 156 |
# compute q, k, v from hidden states
|
|
|
|
| 204 |
# k/v: [b, h, w, d]
|
| 205 |
# rfa_k/rfa_v: [b, h, w//c, d]
|
| 206 |
# 3. in forward inference; the seq_len is already divisible
|
| 207 |
+
rfa_k, rfa_v = eva_prep_kv_func_triton(
|
| 208 |
dump_k, dump_v,
|
| 209 |
self.adaptive_mu_k, self.adaptive_phi,
|
| 210 |
dump_rf_mask, self.head_dim_scaling, self.chunk_size
|
|
|
|
| 230 |
# q: [b, h, n, d]
|
| 231 |
# k/v: [b, h, n, d]
|
| 232 |
# rfa_k/rfa_v: [b, h, n // c, d]
|
| 233 |
+
attn_output = eva_agg_func_triton(
|
| 234 |
q, s_k, s_v,
|
| 235 |
rfa_k, rfa_v,
|
| 236 |
+
singleton_mask, chunk_mask,
|
| 237 |
+
self.head_dim_scaling, self.window_size, self.chunks_per_window
|
| 238 |
)
|
| 239 |
elif is_decoding:
|
| 240 |
# 2. in decoding, the input shape is
|
|
|
|
| 262 |
agg_k = torch.cat([s_k, rfa_k[..., :num_windows_seen_so_far * self.chunks_per_window, :]], dim=-2)
|
| 263 |
agg_v = torch.cat([s_v, rfa_v[..., :num_windows_seen_so_far * self.chunks_per_window, :]], dim=-2)
|
| 264 |
if singleton_mask is not None:
|
| 265 |
+
assert chunk_mask is not None
|
| 266 |
+
attn_mask = torch.cat([singleton_mask, chunk_mask], dim=-1)
|
| 267 |
else:
|
| 268 |
attn_mask = singleton_mask
|
| 269 |
else:
|
|
|
|
| 279 |
)
|
| 280 |
else:
|
| 281 |
# 3. in single-forward inference
|
| 282 |
+
attn_output = eva_agg_func_triton(
|
| 283 |
q, s_k, s_v,
|
| 284 |
rfa_k, rfa_v,
|
| 285 |
+
singleton_mask, chunk_mask,
|
| 286 |
+
self.head_dim_scaling, self.window_size, self.chunks_per_window
|
| 287 |
)
|
| 288 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 289 |
raise ValueError(
|
eva_agg_kernel.py
CHANGED
|
@@ -4,15 +4,969 @@ import torch
|
|
| 4 |
import triton
|
| 5 |
import triton.language as tl
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
@triton.heuristics(
|
| 17 |
{
|
| 18 |
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
|
@@ -30,23 +984,24 @@ def _fwd_eva_agg_kernel(
|
|
| 30 |
RFA_K,
|
| 31 |
RFA_V,
|
| 32 |
WindowMask,
|
|
|
|
| 33 |
Out,
|
|
|
|
| 34 |
softmax_scale,
|
| 35 |
stride_qb, stride_qh, stride_qm,
|
| 36 |
stride_kb, stride_kh, stride_kn,
|
| 37 |
stride_vb, stride_vh, stride_vn,
|
| 38 |
stride_rfa_kb, stride_rfa_kh, stride_rfa_kc,
|
| 39 |
stride_rfa_vb, stride_rfa_vh, stride_rfa_vc,
|
| 40 |
-
|
|
|
|
| 41 |
stride_ob, stride_oh, stride_om,
|
|
|
|
| 42 |
nheads,
|
| 43 |
seqlen_q,
|
| 44 |
seqlen_k,
|
| 45 |
nchunks,
|
| 46 |
headdim,
|
| 47 |
-
CACHE_KEY_SEQLEN_Q, # TODO: why keeping this
|
| 48 |
-
CACHE_KEY_SEQLEN_K, # TODO: why keeping this
|
| 49 |
-
CACHE_KEY_NCHUNKS, # TODO: why keeping this
|
| 50 |
CHUNKS_PER_WINDOW: tl.constexpr,
|
| 51 |
WINDOW_SIZE: tl.constexpr,
|
| 52 |
MASK_TYPE: tl.constexpr,
|
|
@@ -106,11 +1061,18 @@ def _fwd_eva_agg_kernel(
|
|
| 106 |
qk_scale = softmax_scale
|
| 107 |
qk_scale *= 1.4426950408889634 # log2(e)
|
| 108 |
if MASK_TYPE == 1:
|
| 109 |
-
|
| 110 |
WindowMask +
|
| 111 |
-
off_b *
|
| 112 |
-
(offs_m[:, None] *
|
| 113 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
| 115 |
d_i = tl.zeros([BLOCK_M], dtype=tl.float32)
|
| 116 |
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
|
@@ -181,32 +1143,37 @@ def _fwd_eva_agg_kernel(
|
|
| 181 |
|
| 182 |
if MASK_TYPE == 1:
|
| 183 |
if EVEN_M & EVEN_W:
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
)
|
| 187 |
else:
|
| 188 |
-
|
| 189 |
-
|
| 190 |
mask=(offs_m[:, None] < seqlen_q)
|
| 191 |
& ((start_n - start_idx_n + offs_n)[None, :] < WINDOW_SIZE),
|
| 192 |
-
other=
|
| 193 |
-
)
|
| 194 |
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
| 195 |
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
| 196 |
# to multiply with softmax_scale here.
|
| 197 |
# we assume mask already implies the causal masking
|
| 198 |
-
qk = qk * qk_scale
|
|
|
|
| 199 |
m_ij = tl.maximum(tl.max(qk, 1), m_i)
|
| 200 |
-
|
|
|
|
|
|
|
| 201 |
else:
|
| 202 |
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
|
| 203 |
m_ij = tl.maximum(tl.max(qk, 1) * qk_scale, m_i)
|
| 204 |
-
|
|
|
|
|
|
|
| 205 |
|
| 206 |
d_ij = tl.sum(p, 1)
|
| 207 |
|
| 208 |
# scale acc_o
|
| 209 |
-
prev_scale = tl.exp2(m_i -
|
| 210 |
# # -- update output accumulator --
|
| 211 |
acc_o = acc_o * prev_scale[:, None]
|
| 212 |
# update acc_o
|
|
@@ -278,13 +1245,37 @@ def _fwd_eva_agg_kernel(
|
|
| 278 |
if not EVEN_C: # Need to mask out otherwise the softmax is wrong
|
| 279 |
qk += tl.where((start_c + offs_c)[None, :] < nchunks, 0, float("-inf"))
|
| 280 |
|
| 281 |
-
|
| 282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
d_ij = tl.sum(p, 1)
|
| 285 |
|
| 286 |
# scale acc_o
|
| 287 |
-
prev_scale = tl.exp2(m_i -
|
| 288 |
# # -- update output accumulator --
|
| 289 |
acc_o = acc_o * prev_scale[:, None]
|
| 290 |
# update acc_o
|
|
@@ -320,7 +1311,10 @@ def _fwd_eva_agg_kernel(
|
|
| 320 |
d_i = d_i * prev_scale + d_ij
|
| 321 |
m_i = m_ij
|
| 322 |
|
| 323 |
-
#
|
|
|
|
|
|
|
|
|
|
| 324 |
acc_o = acc_o / d_i[:, None]
|
| 325 |
# TODO: understand why rematerialize offsets to save registers?
|
| 326 |
start_m = tl.program_id(0)
|
|
@@ -353,8 +1347,30 @@ def _fwd_eva_agg_kernel(
|
|
| 353 |
out_ptrs, acc_o,
|
| 354 |
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)
|
| 355 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
|
| 357 |
-
def triton_eva_agg_fwd(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
if rfa_k is None and rfa_v is None:
|
| 359 |
empty_rfa_kv = 1
|
| 360 |
|
|
@@ -394,13 +1410,27 @@ def triton_eva_agg_fwd(q, k, v, rfa_k, rfa_v, window_mask, softmax_scale, window
|
|
| 394 |
mask_type = 0
|
| 395 |
if window_mask is not None:
|
| 396 |
mask_type = 1
|
| 397 |
-
assert window_mask.dtype ==
|
| 398 |
assert window_mask.is_cuda
|
| 399 |
assert window_mask.dim() == 4
|
| 400 |
assert window_mask.shape == (batch, 1, seqlen_q, window_size)
|
| 401 |
if window_mask.stride(-1) != 1:
|
| 402 |
window_mask = window_mask.contiguous()
|
| 403 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
(window_mask.stride(0), window_mask.stride(2))
|
| 405 |
if mask_type == 1 else
|
| 406 |
(0, 0)
|
|
@@ -416,20 +1446,16 @@ def triton_eva_agg_fwd(q, k, v, rfa_k, rfa_v, window_mask, softmax_scale, window
|
|
| 416 |
if empty_rfa_kv == 0 else
|
| 417 |
(0, 0, 0)
|
| 418 |
)
|
| 419 |
-
assert chunks_per_window > 0, "chunks_per_window must be greater than 0"
|
| 420 |
|
| 421 |
o = torch.empty_like(q)
|
|
|
|
| 422 |
|
| 423 |
BLOCK_HEADDIM = max(triton.next_power_of_2(head_dim), 16)
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
assert chunks_per_window >= BLOCK, "chunks_per_window must be greater than BLOCK"
|
| 430 |
-
# WINDOW_MASK_TYPE:
|
| 431 |
-
# - 0: regular causal mask, simply None
|
| 432 |
-
# - 1: the shape must be B, 1, W, I, J
|
| 433 |
|
| 434 |
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
| 435 |
_fwd_eva_agg_kernel[grid](
|
|
@@ -439,31 +1465,302 @@ def triton_eva_agg_fwd(q, k, v, rfa_k, rfa_v, window_mask, softmax_scale, window
|
|
| 439 |
rfa_k,
|
| 440 |
rfa_v,
|
| 441 |
window_mask,
|
|
|
|
| 442 |
o,
|
|
|
|
| 443 |
softmax_scale,
|
| 444 |
q.stride(0), q.stride(1), q.stride(2),
|
| 445 |
k.stride(0), k.stride(1), k.stride(2),
|
| 446 |
v.stride(0), v.stride(1), v.stride(2),
|
| 447 |
rfa_k_strides[0], rfa_k_strides[1], rfa_k_strides[2],
|
| 448 |
rfa_v_strides[0], rfa_v_strides[1], rfa_v_strides[2],
|
| 449 |
-
|
|
|
|
| 450 |
o.stride(0), o.stride(1), o.stride(2),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 451 |
nheads,
|
| 452 |
seqlen_q,
|
| 453 |
seqlen_k,
|
| 454 |
nchunks,
|
| 455 |
head_dim,
|
| 456 |
-
seqlen_q // 32,
|
| 457 |
-
seqlen_k // 32,
|
| 458 |
-
nchunks // 32,
|
| 459 |
chunks_per_window,
|
| 460 |
window_size,
|
| 461 |
mask_type,
|
| 462 |
empty_rfa_kv,
|
| 463 |
BLOCK_HEADDIM,
|
| 464 |
-
BLOCK_M=
|
| 465 |
-
BLOCK_N=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 466 |
num_warps=num_warps,
|
| 467 |
-
num_stages=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
)
|
| 469 |
-
return o
|
|
|
|
| 4 |
import triton
|
| 5 |
import triton.language as tl
|
| 6 |
|
| 7 |
+
@triton.heuristics(
|
| 8 |
+
{
|
| 9 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
| 10 |
+
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
| 11 |
+
"EVEN_W": lambda args: args["WINDOW_SIZE"] % args["BLOCK_N"] == 0,
|
| 12 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
| 13 |
+
}
|
| 14 |
+
)
|
| 15 |
+
@triton.jit
|
| 16 |
+
def _bwd_eva_agg_kernel_dkdv(
|
| 17 |
+
Q,
|
| 18 |
+
K,
|
| 19 |
+
V,
|
| 20 |
+
WindowMask,
|
| 21 |
+
DO,
|
| 22 |
+
LSE,
|
| 23 |
+
DO_T_O,
|
| 24 |
+
DK,
|
| 25 |
+
DV,
|
| 26 |
+
softmax_scale,
|
| 27 |
+
stride_qb, stride_qh, stride_qm,
|
| 28 |
+
stride_kb, stride_kh, stride_kn,
|
| 29 |
+
stride_vb, stride_vh, stride_vn,
|
| 30 |
+
stride_window_mask_b, stride_window_mask_m,
|
| 31 |
+
stride_do_b, stride_do_h, stride_do_m,
|
| 32 |
+
stride_lse_b, stride_lse_h,
|
| 33 |
+
stride_do_t_o_b, stride_do_t_o_h,
|
| 34 |
+
stride_dk_b, stride_dk_h, stride_dk_n,
|
| 35 |
+
stride_dv_b, stride_dv_h, stride_dv_n,
|
| 36 |
+
nheads,
|
| 37 |
+
seqlen_q,
|
| 38 |
+
seqlen_k,
|
| 39 |
+
headdim,
|
| 40 |
+
WINDOW_SIZE: tl.constexpr,
|
| 41 |
+
MASK_TYPE: tl.constexpr,
|
| 42 |
+
BLOCK_HEADDIM: tl.constexpr,
|
| 43 |
+
EVEN_M: tl.constexpr,
|
| 44 |
+
EVEN_N: tl.constexpr,
|
| 45 |
+
EVEN_W: tl.constexpr,
|
| 46 |
+
EVEN_HEADDIM: tl.constexpr,
|
| 47 |
+
BLOCK_M: tl.constexpr,
|
| 48 |
+
BLOCK_N: tl.constexpr,
|
| 49 |
+
):
|
| 50 |
+
off_bh = tl.program_id(1)
|
| 51 |
+
off_h = off_bh % nheads
|
| 52 |
+
off_b = off_bh // nheads
|
| 53 |
+
|
| 54 |
+
start_n = tl.program_id(0)
|
| 55 |
+
# determine which window the current KV block belongs to
|
| 56 |
+
offs_w = (start_n * BLOCK_N) // WINDOW_SIZE
|
| 57 |
+
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
| 58 |
+
offs_m = tl.arange(0, BLOCK_M)
|
| 59 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
| 60 |
+
|
| 61 |
+
# initialize pointers
|
| 62 |
+
q_ptrs = (
|
| 63 |
+
Q +
|
| 64 |
+
off_b * stride_qb +
|
| 65 |
+
off_h * stride_qh +
|
| 66 |
+
offs_m[:, None] * stride_qm + offs_d[None, :]
|
| 67 |
+
)
|
| 68 |
+
k_ptrs = (
|
| 69 |
+
K +
|
| 70 |
+
off_b * stride_kb +
|
| 71 |
+
off_h * stride_kh +
|
| 72 |
+
offs_n[:, None] * stride_kn + offs_d[None, :]
|
| 73 |
+
)
|
| 74 |
+
v_ptrs = (
|
| 75 |
+
V +
|
| 76 |
+
off_b * stride_vb +
|
| 77 |
+
off_h * stride_vh +
|
| 78 |
+
offs_n[:, None] * stride_vn + offs_d[None, :]
|
| 79 |
+
)
|
| 80 |
+
do_ptrs = (
|
| 81 |
+
DO +
|
| 82 |
+
off_b * stride_do_b +
|
| 83 |
+
off_h * stride_do_h +
|
| 84 |
+
offs_m[:, None] * stride_do_m + offs_d[None, :]
|
| 85 |
+
)
|
| 86 |
+
do_t_o_ptrs = (
|
| 87 |
+
DO_T_O +
|
| 88 |
+
off_b * stride_do_t_o_b +
|
| 89 |
+
off_h * stride_do_t_o_h +
|
| 90 |
+
offs_m[:, None]
|
| 91 |
+
)
|
| 92 |
+
lse_ptrs = (
|
| 93 |
+
LSE +
|
| 94 |
+
off_b * stride_lse_b +
|
| 95 |
+
off_h * stride_lse_h +
|
| 96 |
+
offs_m[:, None]
|
| 97 |
+
)
|
| 98 |
+
if MASK_TYPE == 1:
|
| 99 |
+
m_ptrs = (
|
| 100 |
+
WindowMask +
|
| 101 |
+
off_b * stride_window_mask_b +
|
| 102 |
+
(offs_m[:, None] * stride_window_mask_m + offs_n[None, :])
|
| 103 |
+
)
|
| 104 |
+
dk_ptrs = (
|
| 105 |
+
DK +
|
| 106 |
+
off_b * stride_dk_b +
|
| 107 |
+
off_h * stride_dk_h +
|
| 108 |
+
offs_n[:, None] * stride_dk_n + offs_d[None, :]
|
| 109 |
+
)
|
| 110 |
+
dv_ptrs = (
|
| 111 |
+
DV +
|
| 112 |
+
off_b * stride_dv_b +
|
| 113 |
+
off_h * stride_dv_h +
|
| 114 |
+
offs_n[:, None] * stride_dv_n + offs_d[None, :]
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# 1. for singletons
|
| 118 |
+
# determine start and end of query block
|
| 119 |
+
begin_m = ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
|
| 120 |
+
end_m = tl.minimum((offs_w + 1) * WINDOW_SIZE, seqlen_q)
|
| 121 |
+
|
| 122 |
+
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
| 123 |
+
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
| 124 |
+
if EVEN_N & EVEN_M:
|
| 125 |
+
if EVEN_HEADDIM:
|
| 126 |
+
k = tl.load(k_ptrs)
|
| 127 |
+
v = tl.load(v_ptrs)
|
| 128 |
+
else:
|
| 129 |
+
k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
| 130 |
+
v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
| 131 |
+
else:
|
| 132 |
+
if EVEN_HEADDIM:
|
| 133 |
+
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
| 134 |
+
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
| 135 |
+
else:
|
| 136 |
+
k = tl.load(
|
| 137 |
+
k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0
|
| 138 |
+
)
|
| 139 |
+
v = tl.load(
|
| 140 |
+
v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0
|
| 141 |
+
)
|
| 142 |
+
for start_m in range(begin_m, end_m, BLOCK_M):
|
| 143 |
+
start_m = tl.multiple_of(start_m, BLOCK_M)
|
| 144 |
+
# load q, do, and lse
|
| 145 |
+
if EVEN_M & EVEN_N:
|
| 146 |
+
if EVEN_HEADDIM:
|
| 147 |
+
q = tl.load(
|
| 148 |
+
q_ptrs + start_m * stride_qm
|
| 149 |
+
)
|
| 150 |
+
do = tl.load(
|
| 151 |
+
do_ptrs + start_m * stride_do_m
|
| 152 |
+
)
|
| 153 |
+
else:
|
| 154 |
+
q = tl.load(
|
| 155 |
+
q_ptrs + start_m * stride_qm,
|
| 156 |
+
mask=offs_d[None, :] < headdim,
|
| 157 |
+
other=0.0
|
| 158 |
+
)
|
| 159 |
+
do = tl.load(
|
| 160 |
+
do_ptrs + start_m * stride_do_m,
|
| 161 |
+
mask=offs_d[None, :] < headdim,
|
| 162 |
+
other=0.0
|
| 163 |
+
)
|
| 164 |
+
do_t_o = tl.load(
|
| 165 |
+
do_t_o_ptrs + start_m
|
| 166 |
+
)
|
| 167 |
+
lse = tl.load(
|
| 168 |
+
lse_ptrs + start_m
|
| 169 |
+
)
|
| 170 |
+
else:
|
| 171 |
+
if EVEN_HEADDIM:
|
| 172 |
+
q = tl.load(
|
| 173 |
+
q_ptrs + start_m * stride_qm,
|
| 174 |
+
mask=(start_m + offs_m)[:, None] < seqlen_q,
|
| 175 |
+
other=0.0
|
| 176 |
+
)
|
| 177 |
+
do = tl.load(
|
| 178 |
+
do_ptrs + start_m * stride_do_m,
|
| 179 |
+
mask=(start_m + offs_m)[:, None] < seqlen_q,
|
| 180 |
+
other=0.0
|
| 181 |
+
)
|
| 182 |
+
else:
|
| 183 |
+
q = tl.load(
|
| 184 |
+
q_ptrs + start_m * stride_qm,
|
| 185 |
+
mask=((start_m + offs_m)[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
| 186 |
+
other=0.0
|
| 187 |
+
)
|
| 188 |
+
do = tl.load(
|
| 189 |
+
do_ptrs + start_m * stride_do_m,
|
| 190 |
+
mask=((start_m + offs_m)[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
| 191 |
+
other=0.0
|
| 192 |
+
)
|
| 193 |
+
do_t_o = tl.load(
|
| 194 |
+
do_t_o_ptrs + start_m,
|
| 195 |
+
mask=(start_m + offs_m)[:, None] < seqlen_q,
|
| 196 |
+
other=0.0
|
| 197 |
+
)
|
| 198 |
+
lse = tl.load(
|
| 199 |
+
lse_ptrs + start_m,
|
| 200 |
+
mask=(start_m + offs_m)[:, None] < seqlen_q,
|
| 201 |
+
other=0.0
|
| 202 |
+
)
|
| 203 |
+
lse = tl.where(lse == float("-inf"), 0.0, lse)
|
| 204 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
| 205 |
+
qk += tl.dot(q, tl.trans(k))
|
| 206 |
+
if not EVEN_M:
|
| 207 |
+
qk += tl.where((start_m + offs_m)[:, None] < seqlen_q, 0, float("-inf"))
|
| 208 |
+
|
| 209 |
+
if MASK_TYPE == 1:
|
| 210 |
+
if EVEN_M & EVEN_W:
|
| 211 |
+
mask = tl.load(
|
| 212 |
+
m_ptrs + (start_m * stride_window_mask_m) - (offs_w * WINDOW_SIZE)
|
| 213 |
+
)
|
| 214 |
+
else:
|
| 215 |
+
mask = tl.load(
|
| 216 |
+
m_ptrs + (start_m * stride_window_mask_m) - (offs_w * WINDOW_SIZE),
|
| 217 |
+
mask=((start_m + offs_m)[:, None] < seqlen_q)
|
| 218 |
+
& (((start_m * stride_window_mask_m) - (offs_w * WINDOW_SIZE) + offs_n)[None, :] < WINDOW_SIZE),
|
| 219 |
+
other=1,
|
| 220 |
+
)
|
| 221 |
+
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
| 222 |
+
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
| 223 |
+
# to multiply with softmax_scale here.
|
| 224 |
+
# we assume mask already implies the causal masking
|
| 225 |
+
qk = qk * softmax_scale
|
| 226 |
+
qk = tl.where(mask, float("-inf"), qk)
|
| 227 |
+
p = tl.exp(qk - lse)
|
| 228 |
+
else:
|
| 229 |
+
qk += tl.where((start_m + offs_m)[:, None] >= offs_n[None, :], 0, float("-inf"))
|
| 230 |
+
p = tl.exp(qk * softmax_scale - lse)
|
| 231 |
+
|
| 232 |
+
# dp [M, N]
|
| 233 |
+
dp = tl.dot(do, tl.trans(v))
|
| 234 |
+
# p [M, N], dp [M, N], do_t_o [M, 1] -> ds [M, N]
|
| 235 |
+
ds = (p * (dp - do_t_o) * softmax_scale).to(q.dtype)
|
| 236 |
+
# p is fp32 and [M, N], convert to q.dtype
|
| 237 |
+
# do [M, D] -> dv [N, D]
|
| 238 |
+
dv += tl.dot(tl.trans(p.to(do.dtype)), do)
|
| 239 |
+
# dk [N, D]
|
| 240 |
+
dk += tl.dot(tl.trans(ds), q)
|
| 241 |
+
if EVEN_N & EVEN_M:
|
| 242 |
+
if EVEN_HEADDIM:
|
| 243 |
+
tl.store(dv_ptrs, dv)
|
| 244 |
+
tl.store(dk_ptrs, dk)
|
| 245 |
+
else:
|
| 246 |
+
tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
|
| 247 |
+
tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
|
| 248 |
+
else:
|
| 249 |
+
if EVEN_HEADDIM:
|
| 250 |
+
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
|
| 251 |
+
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
|
| 252 |
+
else:
|
| 253 |
+
tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
| 254 |
+
tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
| 255 |
+
|
| 256 |
+
@triton.heuristics(
|
| 257 |
+
{
|
| 258 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
| 259 |
+
"EVEN_C": lambda args: args["nchunks"] % args["BLOCK_N"] == 0,
|
| 260 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
| 261 |
+
}
|
| 262 |
+
)
|
| 263 |
+
@triton.jit
|
| 264 |
+
def _bwd_eva_agg_kernel_drfa_kv(
|
| 265 |
+
Q,
|
| 266 |
+
RFA_K,
|
| 267 |
+
RFA_V,
|
| 268 |
+
ChunkMask,
|
| 269 |
+
DO,
|
| 270 |
+
LSE,
|
| 271 |
+
DO_T_O,
|
| 272 |
+
D_RFA_K,
|
| 273 |
+
D_RFA_V,
|
| 274 |
+
softmax_scale,
|
| 275 |
+
stride_qb, stride_qh, stride_qm,
|
| 276 |
+
stride_rfa_kb, stride_rfa_kh, stride_rfa_kc,
|
| 277 |
+
stride_rfa_vb, stride_rfa_vh, stride_rfa_vc,
|
| 278 |
+
stride_chunk_mask_b, stride_chunk_mask_m,
|
| 279 |
+
stride_do_b, stride_do_h, stride_do_m,
|
| 280 |
+
stride_lse_b, stride_lse_h,
|
| 281 |
+
stride_do_t_o_b, stride_do_t_o_h,
|
| 282 |
+
stride_d_rfa_k_b, stride_d_rfa_k_h, stride_d_rfa_k_c,
|
| 283 |
+
stride_d_rfa_v_b, stride_d_rfa_v_h, stride_d_rfa_v_c,
|
| 284 |
+
nheads,
|
| 285 |
+
seqlen_q,
|
| 286 |
+
nchunks,
|
| 287 |
+
headdim,
|
| 288 |
+
CHUNKS_PER_WINDOW: tl.constexpr,
|
| 289 |
+
WINDOW_SIZE: tl.constexpr,
|
| 290 |
+
MASK_TYPE: tl.constexpr,
|
| 291 |
+
BLOCK_HEADDIM: tl.constexpr,
|
| 292 |
+
EVEN_M: tl.constexpr,
|
| 293 |
+
EVEN_C: tl.constexpr,
|
| 294 |
+
EVEN_HEADDIM: tl.constexpr,
|
| 295 |
+
BLOCK_M: tl.constexpr,
|
| 296 |
+
BLOCK_N: tl.constexpr,
|
| 297 |
+
):
|
| 298 |
+
off_bh = tl.program_id(1)
|
| 299 |
+
off_h = off_bh % nheads
|
| 300 |
+
off_b = off_bh // nheads
|
| 301 |
+
start_c = tl.program_id(0)
|
| 302 |
+
# there are 128 chunks per window
|
| 303 |
+
offs_c = start_c * BLOCK_N + tl.arange(0, BLOCK_N)
|
| 304 |
+
# determine which window the current KV block belongs to
|
| 305 |
+
offs_w = (start_c * BLOCK_N) // CHUNKS_PER_WINDOW
|
| 306 |
+
offs_m = tl.arange(0, BLOCK_M)
|
| 307 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
| 308 |
+
|
| 309 |
+
# initialize pointers
|
| 310 |
+
q_ptrs = (
|
| 311 |
+
Q +
|
| 312 |
+
off_b * stride_qb +
|
| 313 |
+
off_h * stride_qh +
|
| 314 |
+
(offs_m[:, None] * stride_qm + offs_d[None, :])
|
| 315 |
+
)
|
| 316 |
+
do_ptrs = (
|
| 317 |
+
DO +
|
| 318 |
+
off_b * stride_do_b +
|
| 319 |
+
off_h * stride_do_h +
|
| 320 |
+
(offs_m[:, None] * stride_do_m + offs_d[None, :])
|
| 321 |
+
)
|
| 322 |
+
do_t_o_ptrs = (
|
| 323 |
+
DO_T_O +
|
| 324 |
+
off_b * stride_do_t_o_b +
|
| 325 |
+
off_h * stride_do_t_o_h +
|
| 326 |
+
(offs_m[:, None])
|
| 327 |
+
)
|
| 328 |
+
lse_ptrs = (
|
| 329 |
+
LSE +
|
| 330 |
+
off_b * stride_lse_b +
|
| 331 |
+
off_h * stride_lse_h +
|
| 332 |
+
(offs_m[:, None])
|
| 333 |
+
)
|
| 334 |
+
rfa_k_ptrs = (
|
| 335 |
+
RFA_K +
|
| 336 |
+
off_b * stride_rfa_kb +
|
| 337 |
+
off_h * stride_rfa_kh +
|
| 338 |
+
(offs_c[:, None] * stride_rfa_kc + offs_d[None, :])
|
| 339 |
+
)
|
| 340 |
+
rfa_v_ptrs = (
|
| 341 |
+
RFA_V +
|
| 342 |
+
off_b * stride_rfa_vb +
|
| 343 |
+
off_h * stride_rfa_vh +
|
| 344 |
+
(offs_c[:, None] * stride_rfa_vc + offs_d[None, :])
|
| 345 |
+
)
|
| 346 |
+
if MASK_TYPE == 1:
|
| 347 |
+
rfa_m_ptrs = (
|
| 348 |
+
ChunkMask +
|
| 349 |
+
off_b * stride_chunk_mask_b +
|
| 350 |
+
(offs_m[:, None] * stride_chunk_mask_m + offs_c[None, :])
|
| 351 |
+
)
|
| 352 |
+
d_rfa_k_ptrs = (
|
| 353 |
+
D_RFA_K +
|
| 354 |
+
off_b * stride_d_rfa_k_b +
|
| 355 |
+
off_h * stride_d_rfa_k_h +
|
| 356 |
+
(offs_c[:, None] * stride_d_rfa_k_c + offs_d[None, :])
|
| 357 |
+
)
|
| 358 |
+
d_rfa_v_ptrs = (
|
| 359 |
+
D_RFA_V +
|
| 360 |
+
off_b * stride_d_rfa_v_b +
|
| 361 |
+
off_h * stride_d_rfa_v_h +
|
| 362 |
+
(offs_c[:, None] * stride_d_rfa_v_c + offs_d[None, :])
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
d_rfa_k = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
| 366 |
+
d_rfa_v = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
| 367 |
+
if EVEN_C & EVEN_M:
|
| 368 |
+
if EVEN_HEADDIM:
|
| 369 |
+
rfa_k = tl.load(rfa_k_ptrs)
|
| 370 |
+
rfa_v = tl.load(rfa_v_ptrs)
|
| 371 |
+
else:
|
| 372 |
+
rfa_k = tl.load(rfa_k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
| 373 |
+
rfa_v = tl.load(rfa_v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
| 374 |
+
else:
|
| 375 |
+
if EVEN_HEADDIM:
|
| 376 |
+
rfa_k = tl.load(rfa_k_ptrs, mask=offs_c[:, None] < nchunks, other=0.0)
|
| 377 |
+
rfa_v = tl.load(rfa_v_ptrs, mask=offs_c[:, None] < nchunks, other=0.0)
|
| 378 |
+
else:
|
| 379 |
+
rfa_k = tl.load(
|
| 380 |
+
rfa_k_ptrs, mask=(offs_c[:, None] < nchunks) & (offs_d[None, :] < headdim), other=0.0
|
| 381 |
+
)
|
| 382 |
+
rfa_v = tl.load(
|
| 383 |
+
rfa_v_ptrs, mask=(offs_c[:, None] < nchunks) & (offs_d[None, :] < headdim), other=0.0
|
| 384 |
+
)
|
| 385 |
+
begin_m = tl.minimum((offs_w + 1) * WINDOW_SIZE, seqlen_q)
|
| 386 |
+
end_m = seqlen_q
|
| 387 |
+
for start_m in range(begin_m, end_m, BLOCK_M):
|
| 388 |
+
start_m = tl.multiple_of(start_m, BLOCK_M)
|
| 389 |
+
# load q, do, and lse
|
| 390 |
+
if EVEN_M:
|
| 391 |
+
if EVEN_HEADDIM:
|
| 392 |
+
q = tl.load(
|
| 393 |
+
q_ptrs + start_m * stride_qm
|
| 394 |
+
)
|
| 395 |
+
do = tl.load(
|
| 396 |
+
do_ptrs + start_m * stride_do_m
|
| 397 |
+
)
|
| 398 |
+
else:
|
| 399 |
+
q = tl.load(
|
| 400 |
+
q_ptrs + start_m * stride_qm,
|
| 401 |
+
mask=offs_d[None, :] < headdim,
|
| 402 |
+
other=0.0
|
| 403 |
+
)
|
| 404 |
+
do = tl.load(
|
| 405 |
+
do_ptrs + start_m * stride_do_m,
|
| 406 |
+
mask=offs_d[None, :] < headdim,
|
| 407 |
+
other=0.0
|
| 408 |
+
)
|
| 409 |
+
do_t_o = tl.load(
|
| 410 |
+
do_t_o_ptrs + start_m
|
| 411 |
+
)
|
| 412 |
+
lse = tl.load(
|
| 413 |
+
lse_ptrs + start_m
|
| 414 |
+
)
|
| 415 |
+
else:
|
| 416 |
+
if EVEN_HEADDIM:
|
| 417 |
+
q = tl.load(
|
| 418 |
+
q_ptrs + start_m * stride_qm,
|
| 419 |
+
mask=(start_m + offs_m)[:, None] < seqlen_q,
|
| 420 |
+
other=0.0
|
| 421 |
+
)
|
| 422 |
+
do = tl.load(
|
| 423 |
+
do_ptrs + start_m * stride_do_m,
|
| 424 |
+
mask=(start_m + offs_m)[:, None] < seqlen_q,
|
| 425 |
+
other=0.0
|
| 426 |
+
)
|
| 427 |
+
else:
|
| 428 |
+
q = tl.load(
|
| 429 |
+
q_ptrs + start_m * stride_qm,
|
| 430 |
+
mask=((start_m + offs_m)[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
| 431 |
+
other=0.0
|
| 432 |
+
)
|
| 433 |
+
do = tl.load(
|
| 434 |
+
do_ptrs + start_m * stride_do_m,
|
| 435 |
+
mask=((start_m + offs_m)[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
| 436 |
+
other=0.0
|
| 437 |
+
)
|
| 438 |
+
do_t_o = tl.load(
|
| 439 |
+
do_t_o_ptrs + start_m,
|
| 440 |
+
mask=(start_m + offs_m)[:, None] < seqlen_q,
|
| 441 |
+
other=0.0
|
| 442 |
+
)
|
| 443 |
+
lse = tl.load(
|
| 444 |
+
lse_ptrs + start_m,
|
| 445 |
+
mask=(start_m + offs_m)[:, None] < seqlen_q,
|
| 446 |
+
other=0.0
|
| 447 |
+
)
|
| 448 |
+
lse = tl.where(lse == float("-inf"), 0.0, lse)
|
| 449 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
| 450 |
+
qk += tl.dot(q, tl.trans(rfa_k))
|
| 451 |
+
if not EVEN_M:
|
| 452 |
+
qk += tl.where((start_m + offs_m)[:, None] < seqlen_q, 0, float("-inf"))
|
| 453 |
+
|
| 454 |
+
if MASK_TYPE == 1:
|
| 455 |
+
if EVEN_M & EVEN_C:
|
| 456 |
+
mask = tl.load(
|
| 457 |
+
rfa_m_ptrs + (start_m * stride_chunk_mask_m)
|
| 458 |
+
)
|
| 459 |
+
else:
|
| 460 |
+
mask = tl.load(
|
| 461 |
+
rfa_m_ptrs + (start_m * stride_chunk_mask_m),
|
| 462 |
+
mask=((start_m + offs_m)[:, None] < seqlen_q)
|
| 463 |
+
& (offs_c[None, :] < nchunks),
|
| 464 |
+
other=1,
|
| 465 |
+
)
|
| 466 |
+
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
| 467 |
+
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
| 468 |
+
# to multiply with softmax_scale here.
|
| 469 |
+
# we assume mask already implies the causal masking
|
| 470 |
+
qk = qk * softmax_scale
|
| 471 |
+
qk = tl.where(mask, float("-inf"), qk)
|
| 472 |
+
p = tl.exp(qk - lse)
|
| 473 |
+
else:
|
| 474 |
+
p = tl.exp(qk * softmax_scale - lse)
|
| 475 |
+
|
| 476 |
+
dp = tl.dot(do, tl.trans(rfa_v))
|
| 477 |
+
ds = (p * (dp - do_t_o) * softmax_scale).to(q.dtype)
|
| 478 |
+
# p is fp32, convert to q.dtype
|
| 479 |
+
d_rfa_v += tl.dot(tl.trans(p.to(do.dtype)), do)
|
| 480 |
+
# move softmax_scale to ds to save computation
|
| 481 |
+
d_rfa_k += tl.dot(tl.trans(ds), q)
|
| 482 |
+
if EVEN_C & EVEN_M:
|
| 483 |
+
if EVEN_HEADDIM:
|
| 484 |
+
tl.store(d_rfa_v_ptrs, d_rfa_v)
|
| 485 |
+
tl.store(d_rfa_k_ptrs, d_rfa_k)
|
| 486 |
+
else:
|
| 487 |
+
tl.store(d_rfa_v_ptrs, d_rfa_v, mask=offs_d[None, :] < headdim)
|
| 488 |
+
tl.store(d_rfa_k_ptrs, d_rfa_k, mask=offs_d[None, :] < headdim)
|
| 489 |
+
else:
|
| 490 |
+
if EVEN_HEADDIM:
|
| 491 |
+
tl.store(d_rfa_v_ptrs, d_rfa_v, mask=offs_c[:, None] < nchunks)
|
| 492 |
+
tl.store(d_rfa_k_ptrs, d_rfa_k, mask=offs_c[:, None] < nchunks)
|
| 493 |
+
else:
|
| 494 |
+
tl.store(d_rfa_v_ptrs, d_rfa_v, mask=(offs_c[:, None] < nchunks) & (offs_d[None, :] < headdim))
|
| 495 |
+
tl.store(d_rfa_k_ptrs, d_rfa_k, mask=(offs_c[:, None] < nchunks) & (offs_d[None, :] < headdim))
|
| 496 |
+
|
| 497 |
+
@triton.heuristics(
|
| 498 |
+
{
|
| 499 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
| 500 |
+
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
| 501 |
+
"EVEN_C": lambda args: args["nchunks"] % args["BLOCK_N"] == 0,
|
| 502 |
+
"EVEN_W": lambda args: args["WINDOW_SIZE"] % args["BLOCK_N"] == 0,
|
| 503 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
| 504 |
+
}
|
| 505 |
+
)
|
| 506 |
+
@triton.jit
|
| 507 |
+
def _bwd_eva_agg_kernel_dq(
|
| 508 |
+
Q,
|
| 509 |
+
K,
|
| 510 |
+
V,
|
| 511 |
+
RFA_K,
|
| 512 |
+
RFA_V,
|
| 513 |
+
WindowMask,
|
| 514 |
+
ChunkMask,
|
| 515 |
+
DO,
|
| 516 |
+
LSE,
|
| 517 |
+
DO_T_O,
|
| 518 |
+
DQ,
|
| 519 |
+
softmax_scale,
|
| 520 |
+
stride_qb, stride_qh, stride_qm,
|
| 521 |
+
stride_kb, stride_kh, stride_kn,
|
| 522 |
+
stride_vb, stride_vh, stride_vn,
|
| 523 |
+
stride_rfa_kb, stride_rfa_kh, stride_rfa_kc,
|
| 524 |
+
stride_rfa_vb, stride_rfa_vh, stride_rfa_vc,
|
| 525 |
+
stride_window_mask_b, stride_window_mask_m,
|
| 526 |
+
stride_chunk_mask_b, stride_chunk_mask_m,
|
| 527 |
+
stride_do_b, stride_do_h, stride_do_m,
|
| 528 |
+
stride_lse_b, stride_lse_h,
|
| 529 |
+
stride_do_t_o_b, stride_do_t_o_h,
|
| 530 |
+
stride_dq_b, stride_dq_h, stride_dq_m,
|
| 531 |
+
nheads,
|
| 532 |
+
seqlen_q,
|
| 533 |
+
seqlen_k,
|
| 534 |
+
nchunks,
|
| 535 |
+
headdim,
|
| 536 |
+
CHUNKS_PER_WINDOW: tl.constexpr,
|
| 537 |
+
WINDOW_SIZE: tl.constexpr,
|
| 538 |
+
MASK_TYPE: tl.constexpr,
|
| 539 |
+
EMPTY_RFA_KV: tl.constexpr,
|
| 540 |
+
BLOCK_HEADDIM: tl.constexpr,
|
| 541 |
+
EVEN_M: tl.constexpr,
|
| 542 |
+
EVEN_N: tl.constexpr,
|
| 543 |
+
EVEN_W: tl.constexpr,
|
| 544 |
+
EVEN_C: tl.constexpr,
|
| 545 |
+
EVEN_HEADDIM: tl.constexpr,
|
| 546 |
+
BLOCK_M: tl.constexpr,
|
| 547 |
+
BLOCK_N: tl.constexpr,
|
| 548 |
+
):
|
| 549 |
+
start_m = tl.program_id(0)
|
| 550 |
+
off_bh = tl.program_id(1)
|
| 551 |
+
off_h = off_bh % nheads
|
| 552 |
+
off_b = off_bh // nheads
|
| 553 |
+
# initialize offsets
|
| 554 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 555 |
+
offs_w = (start_m * BLOCK_M) // WINDOW_SIZE
|
| 556 |
+
offs_n = tl.arange(0, BLOCK_N)
|
| 557 |
+
offs_c = tl.arange(0, BLOCK_N)
|
| 558 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
| 559 |
+
# TODO: add paratheses or not
|
| 560 |
+
q_ptrs = (
|
| 561 |
+
Q +
|
| 562 |
+
off_b * stride_qb +
|
| 563 |
+
off_h * stride_qh +
|
| 564 |
+
(offs_m[:, None] * stride_qm + offs_d[None, :])
|
| 565 |
+
)
|
| 566 |
+
k_ptrs = (
|
| 567 |
+
K +
|
| 568 |
+
off_b * stride_kb +
|
| 569 |
+
off_h * stride_kh +
|
| 570 |
+
(offs_n[:, None] * stride_kn + offs_d[None, :])
|
| 571 |
+
)
|
| 572 |
+
v_ptrs = (
|
| 573 |
+
V +
|
| 574 |
+
off_b * stride_vb +
|
| 575 |
+
off_h * stride_vh +
|
| 576 |
+
(offs_n[:, None] * stride_vn + offs_d[None, :])
|
| 577 |
+
)
|
| 578 |
+
if EMPTY_RFA_KV == 0:
|
| 579 |
+
rfa_k_ptrs = (
|
| 580 |
+
RFA_K +
|
| 581 |
+
off_b * stride_rfa_kb +
|
| 582 |
+
off_h * stride_rfa_kh +
|
| 583 |
+
(offs_c[:, None] * stride_rfa_kc + offs_d[None, :])
|
| 584 |
+
)
|
| 585 |
+
rfa_v_ptrs = (
|
| 586 |
+
RFA_V +
|
| 587 |
+
off_b * stride_rfa_vb +
|
| 588 |
+
off_h * stride_rfa_vh +
|
| 589 |
+
(offs_c[:, None] * stride_rfa_vc + offs_d[None, :])
|
| 590 |
+
)
|
| 591 |
+
dq_ptrs = (
|
| 592 |
+
DQ +
|
| 593 |
+
off_b * stride_dq_b +
|
| 594 |
+
off_h * stride_dq_h +
|
| 595 |
+
(offs_m[:, None] * stride_dq_m + offs_d[None, :])
|
| 596 |
+
)
|
| 597 |
+
do_ptrs = (
|
| 598 |
+
DO +
|
| 599 |
+
off_b * stride_do_b +
|
| 600 |
+
off_h * stride_do_h +
|
| 601 |
+
(offs_m[:, None] * stride_do_m + offs_d[None, :])
|
| 602 |
+
)
|
| 603 |
+
do_t_o_ptrs = (
|
| 604 |
+
DO_T_O +
|
| 605 |
+
off_b * stride_do_t_o_b +
|
| 606 |
+
off_h * stride_do_t_o_h +
|
| 607 |
+
offs_m[:, None]
|
| 608 |
+
)
|
| 609 |
+
lse_ptrs = (
|
| 610 |
+
LSE +
|
| 611 |
+
off_b * stride_lse_b +
|
| 612 |
+
off_h * stride_lse_h +
|
| 613 |
+
offs_m[:, None]
|
| 614 |
+
)
|
| 615 |
+
### load q, do, do_t_o, lse ####
|
| 616 |
+
if EVEN_M:
|
| 617 |
+
if EVEN_HEADDIM:
|
| 618 |
+
q = tl.load(
|
| 619 |
+
q_ptrs
|
| 620 |
+
)
|
| 621 |
+
do = tl.load(
|
| 622 |
+
do_ptrs
|
| 623 |
+
)
|
| 624 |
+
else:
|
| 625 |
+
q = tl.load(
|
| 626 |
+
q_ptrs,
|
| 627 |
+
mask=offs_d[None, :] < headdim,
|
| 628 |
+
other=0.0
|
| 629 |
+
)
|
| 630 |
+
do = tl.load(
|
| 631 |
+
do_ptrs,
|
| 632 |
+
mask=offs_d[None, :] < headdim,
|
| 633 |
+
other=0.0
|
| 634 |
+
)
|
| 635 |
+
do_t_o = tl.load(
|
| 636 |
+
do_t_o_ptrs
|
| 637 |
+
)
|
| 638 |
+
lse = tl.load(
|
| 639 |
+
lse_ptrs
|
| 640 |
+
)
|
| 641 |
+
else:
|
| 642 |
+
if EVEN_HEADDIM:
|
| 643 |
+
q = tl.load(
|
| 644 |
+
q_ptrs,
|
| 645 |
+
mask=offs_m[:, None] < seqlen_q,
|
| 646 |
+
other=0.0
|
| 647 |
+
)
|
| 648 |
+
do = tl.load(
|
| 649 |
+
do_ptrs,
|
| 650 |
+
mask=offs_m[:, None] < seqlen_q,
|
| 651 |
+
other=0.0
|
| 652 |
+
)
|
| 653 |
+
else:
|
| 654 |
+
q = tl.load(
|
| 655 |
+
q_ptrs,
|
| 656 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
| 657 |
+
other=0.0
|
| 658 |
+
)
|
| 659 |
+
do = tl.load(
|
| 660 |
+
do_ptrs,
|
| 661 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
| 662 |
+
other=0.0
|
| 663 |
+
)
|
| 664 |
+
do_t_o = tl.load(
|
| 665 |
+
do_t_o_ptrs,
|
| 666 |
+
mask=offs_m[:, None] < seqlen_q,
|
| 667 |
+
other=0.0
|
| 668 |
+
)
|
| 669 |
+
lse = tl.load(
|
| 670 |
+
lse_ptrs,
|
| 671 |
+
mask=offs_m[:, None] < seqlen_q,
|
| 672 |
+
other=0.0
|
| 673 |
+
)
|
| 674 |
+
lse = tl.where(lse == float("-inf"), 0.0, lse)
|
| 675 |
+
lse *= 1.4426950408889634 # log2(e)
|
| 676 |
+
qk_scale = softmax_scale
|
| 677 |
+
qk_scale *= 1.4426950408889634 # log2(e)
|
| 678 |
+
if MASK_TYPE == 1:
|
| 679 |
+
window_mask_ptrs = (
|
| 680 |
+
WindowMask +
|
| 681 |
+
off_b * stride_window_mask_b +
|
| 682 |
+
(offs_m[:, None] * stride_window_mask_m + offs_n[None, :])
|
| 683 |
+
)
|
| 684 |
+
if EMPTY_RFA_KV == 0:
|
| 685 |
+
chunk_mask_ptrs = (
|
| 686 |
+
ChunkMask +
|
| 687 |
+
off_b * stride_chunk_mask_b +
|
| 688 |
+
(offs_m[:, None] * stride_chunk_mask_m + offs_c[None, :])
|
| 689 |
+
)
|
| 690 |
+
|
| 691 |
+
dq = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
| 692 |
+
# loop over k, v and update accumulator
|
| 693 |
+
# Iterate over local singletons;
|
| 694 |
+
# so we only iterate over blocks within the current window
|
| 695 |
+
start_idx_n = offs_w * WINDOW_SIZE
|
| 696 |
+
end_idx_n = tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
|
| 697 |
+
for start_n in range(start_idx_n, end_idx_n, BLOCK_N):
|
| 698 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
| 699 |
+
if EVEN_N & EVEN_M:
|
| 700 |
+
if EVEN_HEADDIM:
|
| 701 |
+
k = tl.load(
|
| 702 |
+
k_ptrs + start_n * stride_kn
|
| 703 |
+
)
|
| 704 |
+
else:
|
| 705 |
+
k = tl.load(
|
| 706 |
+
k_ptrs + start_n * stride_kn,
|
| 707 |
+
mask=offs_d[None, :] < headdim,
|
| 708 |
+
other=0.0
|
| 709 |
+
)
|
| 710 |
+
else:
|
| 711 |
+
if EVEN_HEADDIM:
|
| 712 |
+
k = tl.load(
|
| 713 |
+
k_ptrs + start_n * stride_kn,
|
| 714 |
+
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
| 715 |
+
other=0.0,
|
| 716 |
+
)
|
| 717 |
+
else:
|
| 718 |
+
k = tl.load(
|
| 719 |
+
k_ptrs + start_n * stride_kn,
|
| 720 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
| 721 |
+
other=0.0,
|
| 722 |
+
)
|
| 723 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
| 724 |
+
qk += tl.dot(q, tl.trans(k))
|
| 725 |
+
# Trying to combine the two masks seem to make the result wrong
|
| 726 |
+
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
| 727 |
+
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
|
| 728 |
+
|
| 729 |
+
if MASK_TYPE == 1:
|
| 730 |
+
if EVEN_M & EVEN_W:
|
| 731 |
+
window_mask = tl.load(
|
| 732 |
+
window_mask_ptrs + start_n - start_idx_n
|
| 733 |
+
)
|
| 734 |
+
else:
|
| 735 |
+
window_mask = tl.load(
|
| 736 |
+
window_mask_ptrs + start_n - start_idx_n,
|
| 737 |
+
mask=(offs_m[:, None] < seqlen_q)
|
| 738 |
+
& ((start_n - start_idx_n + offs_n)[None, :] < WINDOW_SIZE),
|
| 739 |
+
other=1,
|
| 740 |
+
)
|
| 741 |
+
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
| 742 |
+
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
| 743 |
+
# to multiply with softmax_scale here.
|
| 744 |
+
# we assume mask already implies the causal masking
|
| 745 |
+
qk = qk * qk_scale
|
| 746 |
+
qk = tl.where(window_mask, float("-inf"), qk)
|
| 747 |
+
p = tl.exp2(qk - lse)
|
| 748 |
+
else:
|
| 749 |
+
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
|
| 750 |
+
p = tl.exp2(qk * qk_scale - lse)
|
| 751 |
+
|
| 752 |
+
if EVEN_N & EVEN_M:
|
| 753 |
+
if EVEN_HEADDIM:
|
| 754 |
+
v = tl.load(
|
| 755 |
+
v_ptrs + start_n * stride_vn
|
| 756 |
+
)
|
| 757 |
+
else:
|
| 758 |
+
v = tl.load(
|
| 759 |
+
v_ptrs + start_n * stride_vn,
|
| 760 |
+
mask=offs_d[None, :] < headdim,
|
| 761 |
+
other=0.0
|
| 762 |
+
)
|
| 763 |
+
else:
|
| 764 |
+
if EVEN_HEADDIM:
|
| 765 |
+
v = tl.load(
|
| 766 |
+
v_ptrs + start_n * stride_vn,
|
| 767 |
+
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
| 768 |
+
other=0.0,
|
| 769 |
+
)
|
| 770 |
+
else:
|
| 771 |
+
v = tl.load(
|
| 772 |
+
v_ptrs + start_n * stride_vn,
|
| 773 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
| 774 |
+
other=0.0,
|
| 775 |
+
)
|
| 776 |
+
dp = tl.dot(do, tl.trans(v))
|
| 777 |
+
ds = (p * (dp - do_t_o) * softmax_scale).to(q.dtype)
|
| 778 |
+
dq += tl.dot(ds, k)
|
| 779 |
+
|
| 780 |
+
if EMPTY_RFA_KV == 0:
|
| 781 |
+
# Iterate over RFA chunks
|
| 782 |
+
# we only iterate over chunks before the current local singleton window
|
| 783 |
+
end_idx_c = tl.minimum(offs_w * CHUNKS_PER_WINDOW, nchunks)
|
| 784 |
+
for start_c in range(0, end_idx_c, BLOCK_N):
|
| 785 |
+
start_c = tl.multiple_of(start_c, BLOCK_N)
|
| 786 |
+
# -- compute qk ----
|
| 787 |
+
if EVEN_C & EVEN_M:
|
| 788 |
+
if EVEN_HEADDIM:
|
| 789 |
+
rfa_k = tl.load(
|
| 790 |
+
rfa_k_ptrs + start_c * stride_rfa_kc
|
| 791 |
+
)
|
| 792 |
+
else:
|
| 793 |
+
rfa_k = tl.load(
|
| 794 |
+
rfa_k_ptrs + start_c * stride_rfa_kc,
|
| 795 |
+
mask=offs_d[None, :] < headdim,
|
| 796 |
+
other=0.0
|
| 797 |
+
)
|
| 798 |
+
else:
|
| 799 |
+
if EVEN_HEADDIM:
|
| 800 |
+
rfa_k = tl.load(
|
| 801 |
+
rfa_k_ptrs + start_c * stride_rfa_kc,
|
| 802 |
+
mask=(start_c + offs_c)[:, None] < nchunks,
|
| 803 |
+
other=0.0,
|
| 804 |
+
)
|
| 805 |
+
else:
|
| 806 |
+
rfa_k = tl.load(
|
| 807 |
+
rfa_k_ptrs + start_c * stride_rfa_kc,
|
| 808 |
+
mask=((start_c + offs_c)[:, None] < nchunks) & (offs_d[None, :] < headdim),
|
| 809 |
+
other=0.0,
|
| 810 |
+
)
|
| 811 |
+
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
| 812 |
+
qk += tl.dot(q, tl.trans(rfa_k))
|
| 813 |
+
# Trying to combine the two masks seem to make the result wrong
|
| 814 |
+
if not EVEN_C: # Need to mask out otherwise the softmax is wrong
|
| 815 |
+
qk += tl.where((start_c + offs_c)[None, :] < nchunks, 0, float("-inf"))
|
| 816 |
+
|
| 817 |
+
if MASK_TYPE == 1:
|
| 818 |
+
if EVEN_C & EVEN_M:
|
| 819 |
+
chunk_mask = tl.load(
|
| 820 |
+
chunk_mask_ptrs + start_c
|
| 821 |
+
)
|
| 822 |
+
else:
|
| 823 |
+
chunk_mask = tl.load(
|
| 824 |
+
chunk_mask_ptrs + start_c,
|
| 825 |
+
mask=(offs_m[:, None] < seqlen_q) & ((start_c + offs_c)[None, :] < nchunks),
|
| 826 |
+
other=1,
|
| 827 |
+
)
|
| 828 |
+
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
| 829 |
+
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
| 830 |
+
# to multiply with softmax_scale here.
|
| 831 |
+
# we assume mask already implies the causal masking
|
| 832 |
+
qk = qk * qk_scale
|
| 833 |
+
qk = tl.where(chunk_mask, float("-inf"), qk)
|
| 834 |
+
p = tl.exp2(qk - lse)
|
| 835 |
+
else:
|
| 836 |
+
p = tl.exp2(qk * qk_scale - lse)
|
| 837 |
+
|
| 838 |
+
if EVEN_C & EVEN_M:
|
| 839 |
+
if EVEN_HEADDIM:
|
| 840 |
+
rfa_v = tl.load(
|
| 841 |
+
rfa_v_ptrs + start_c * stride_rfa_vc
|
| 842 |
+
)
|
| 843 |
+
else:
|
| 844 |
+
rfa_v = tl.load(
|
| 845 |
+
rfa_v_ptrs + start_c * stride_rfa_vc,
|
| 846 |
+
mask=offs_d[None, :] < headdim,
|
| 847 |
+
other=0.0
|
| 848 |
+
)
|
| 849 |
+
else:
|
| 850 |
+
if EVEN_HEADDIM:
|
| 851 |
+
rfa_v = tl.load(
|
| 852 |
+
rfa_v_ptrs + start_c * stride_rfa_vc,
|
| 853 |
+
mask=(start_c + offs_n)[:, None] < nchunks,
|
| 854 |
+
other=0.0,
|
| 855 |
+
)
|
| 856 |
+
else:
|
| 857 |
+
rfa_v = tl.load(
|
| 858 |
+
rfa_v_ptrs + start_c * stride_rfa_vc,
|
| 859 |
+
mask=((start_c + offs_n)[:, None] < nchunks) & (offs_d[None, :] < headdim),
|
| 860 |
+
other=0.0,
|
| 861 |
+
)
|
| 862 |
+
dp = tl.dot(do, tl.trans(rfa_v))
|
| 863 |
+
ds = (p * (dp - do_t_o) * softmax_scale).to(q.dtype)
|
| 864 |
+
dq += tl.dot(ds, rfa_k)
|
| 865 |
+
|
| 866 |
+
start_m = tl.program_id(0)
|
| 867 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 868 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
| 869 |
+
dq_ptrs = (
|
| 870 |
+
DQ +
|
| 871 |
+
off_b * stride_dq_b +
|
| 872 |
+
off_h * stride_dq_h +
|
| 873 |
+
(offs_m[:, None] * stride_dq_m + offs_d[None, :])
|
| 874 |
+
)
|
| 875 |
+
if EVEN_M:
|
| 876 |
+
if EVEN_HEADDIM:
|
| 877 |
+
tl.store(
|
| 878 |
+
dq_ptrs, dq
|
| 879 |
+
)
|
| 880 |
+
else:
|
| 881 |
+
tl.store(
|
| 882 |
+
dq_ptrs, dq,
|
| 883 |
+
mask=offs_d[None, :] < headdim
|
| 884 |
+
)
|
| 885 |
+
else:
|
| 886 |
+
if EVEN_HEADDIM:
|
| 887 |
+
tl.store(
|
| 888 |
+
dq_ptrs, dq,
|
| 889 |
+
mask=offs_m[:, None] < seqlen_q
|
| 890 |
+
)
|
| 891 |
+
else:
|
| 892 |
+
tl.store(
|
| 893 |
+
dq_ptrs, dq,
|
| 894 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)
|
| 895 |
+
)
|
| 896 |
+
|
| 897 |
+
_capability_90_config = {
|
| 898 |
+
"fwd": {
|
| 899 |
+
(torch.bfloat16, 64): (128, 128, 4, 3),
|
| 900 |
+
(torch.bfloat16, 128): (128, 128, 8, 3),
|
| 901 |
+
(torch.float32, 64): (128, 64, 8, 3),
|
| 902 |
+
(torch.float32, 128): (64, 32, 4, 3),
|
| 903 |
+
},
|
| 904 |
+
"bwd_dq": {
|
| 905 |
+
(torch.bfloat16, 64): (128, 64, 4, 3),
|
| 906 |
+
(torch.bfloat16, 128): (128, 64, 8, 3),
|
| 907 |
+
(torch.float32, 64): (128, 64, 8, 2),
|
| 908 |
+
(torch.float32, 128): (32, 32, 4, 2),
|
| 909 |
+
},
|
| 910 |
+
"bwd_dkdv": {
|
| 911 |
+
(torch.bfloat16, 64): (128, 64, 4, 2),
|
| 912 |
+
(torch.bfloat16, 128): (128, 64, 8, 2),
|
| 913 |
+
(torch.float32, 64): (128, 64, 8, 2),
|
| 914 |
+
(torch.float32, 128): (32, 32, 4, 1),
|
| 915 |
+
},
|
| 916 |
+
"bwd_drfa_kv": {
|
| 917 |
+
(torch.bfloat16, 64): (128, 64, 4, 2),
|
| 918 |
+
(torch.bfloat16, 128): (128, 64, 8, 2),
|
| 919 |
+
(torch.float32, 64): (128, 64, 8, 2),
|
| 920 |
+
(torch.float32, 128): (32, 32, 4, 1),
|
| 921 |
+
}
|
| 922 |
+
}
|
| 923 |
+
|
| 924 |
+
_capability_80_config = {
|
| 925 |
+
"fwd": {
|
| 926 |
+
(torch.bfloat16, 64): (64, 64, 4, 3),
|
| 927 |
+
(torch.bfloat16, 128): (64, 64, 8, 3),
|
| 928 |
+
(torch.float32, 64): (64, 32, 4, 2),
|
| 929 |
+
(torch.float32, 128): (64, 32, 8, 1),
|
| 930 |
+
},
|
| 931 |
+
"bwd_dq": {
|
| 932 |
+
(torch.bfloat16, 64): (64, 64, 4, 3),
|
| 933 |
+
(torch.bfloat16, 128): (64, 32, 4, 2),
|
| 934 |
+
(torch.float32, 64): (32, 32, 4, 2),
|
| 935 |
+
(torch.float32, 128): (32, 32, 4, 2),
|
| 936 |
+
},
|
| 937 |
+
"bwd_dkdv": {
|
| 938 |
+
(torch.bfloat16, 64): (64, 64, 4, 3),
|
| 939 |
+
(torch.bfloat16, 128): (32, 32, 4, 2),
|
| 940 |
+
(torch.float32, 64): (32, 32, 4, 1),
|
| 941 |
+
(torch.float32, 128): (16, 64, 8, 1),
|
| 942 |
+
},
|
| 943 |
+
"bwd_drfa_kv": {
|
| 944 |
+
(torch.bfloat16, 64): (64, 64, 4, 3),
|
| 945 |
+
(torch.bfloat16, 128): (64, 32, 4, 3),
|
| 946 |
+
(torch.float32, 64): (32, 32, 4, 1),
|
| 947 |
+
(torch.float32, 128): (32, 32, 4, 1),
|
| 948 |
+
}
|
| 949 |
+
}
|
| 950 |
+
|
| 951 |
+
def _get_config(dtype, head_dim, mode) -> tuple[int, int, int, int]:
|
| 952 |
+
capability = torch.cuda.get_device_capability()
|
| 953 |
+
if capability >= (9, 0):
|
| 954 |
+
kernel_config = _capability_90_config[mode].get((dtype, head_dim), (32, 32, 4, 1))
|
| 955 |
+
elif capability >= (8, 0):
|
| 956 |
+
kernel_config = _capability_80_config[mode].get((dtype, head_dim), (16, 16, 4, 1))
|
| 957 |
+
else:
|
| 958 |
+
if mode == "fwd":
|
| 959 |
+
if dtype == torch.float32:
|
| 960 |
+
kernel_config = (32, 16, 4, 2)
|
| 961 |
+
else:
|
| 962 |
+
kernel_config = (64, 32, 4, 2)
|
| 963 |
+
else:
|
| 964 |
+
if dtype == torch.float32:
|
| 965 |
+
kernel_config = (16, 16, 4, 1)
|
| 966 |
+
else:
|
| 967 |
+
kernel_config = (32, 32, 4, 1)
|
| 968 |
+
return kernel_config
|
| 969 |
+
|
| 970 |
@triton.heuristics(
|
| 971 |
{
|
| 972 |
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
|
|
|
| 984 |
RFA_K,
|
| 985 |
RFA_V,
|
| 986 |
WindowMask,
|
| 987 |
+
ChunkMask,
|
| 988 |
Out,
|
| 989 |
+
LSE,
|
| 990 |
softmax_scale,
|
| 991 |
stride_qb, stride_qh, stride_qm,
|
| 992 |
stride_kb, stride_kh, stride_kn,
|
| 993 |
stride_vb, stride_vh, stride_vn,
|
| 994 |
stride_rfa_kb, stride_rfa_kh, stride_rfa_kc,
|
| 995 |
stride_rfa_vb, stride_rfa_vh, stride_rfa_vc,
|
| 996 |
+
stride_window_mask_b, stride_window_mask_m,
|
| 997 |
+
stride_chunk_mask_b, stride_chunk_mask_m,
|
| 998 |
stride_ob, stride_oh, stride_om,
|
| 999 |
+
stride_lse_b, stride_lse_h,
|
| 1000 |
nheads,
|
| 1001 |
seqlen_q,
|
| 1002 |
seqlen_k,
|
| 1003 |
nchunks,
|
| 1004 |
headdim,
|
|
|
|
|
|
|
|
|
|
| 1005 |
CHUNKS_PER_WINDOW: tl.constexpr,
|
| 1006 |
WINDOW_SIZE: tl.constexpr,
|
| 1007 |
MASK_TYPE: tl.constexpr,
|
|
|
|
| 1061 |
qk_scale = softmax_scale
|
| 1062 |
qk_scale *= 1.4426950408889634 # log2(e)
|
| 1063 |
if MASK_TYPE == 1:
|
| 1064 |
+
window_mask_ptrs = (
|
| 1065 |
WindowMask +
|
| 1066 |
+
off_b * stride_window_mask_b +
|
| 1067 |
+
(offs_m[:, None] * stride_window_mask_m + offs_n[None, :])
|
| 1068 |
)
|
| 1069 |
+
if EMPTY_RFA_KV == 0:
|
| 1070 |
+
chunk_mask_ptrs = (
|
| 1071 |
+
ChunkMask +
|
| 1072 |
+
off_b * stride_chunk_mask_b +
|
| 1073 |
+
(offs_m[:, None] * stride_chunk_mask_m + offs_c[None, :])
|
| 1074 |
+
)
|
| 1075 |
+
|
| 1076 |
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
| 1077 |
d_i = tl.zeros([BLOCK_M], dtype=tl.float32)
|
| 1078 |
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
|
|
|
| 1143 |
|
| 1144 |
if MASK_TYPE == 1:
|
| 1145 |
if EVEN_M & EVEN_W:
|
| 1146 |
+
window_mask = tl.load(
|
| 1147 |
+
window_mask_ptrs + start_n - start_idx_n
|
| 1148 |
+
)
|
| 1149 |
else:
|
| 1150 |
+
window_mask = tl.load(
|
| 1151 |
+
window_mask_ptrs + start_n - start_idx_n,
|
| 1152 |
mask=(offs_m[:, None] < seqlen_q)
|
| 1153 |
& ((start_n - start_idx_n + offs_n)[None, :] < WINDOW_SIZE),
|
| 1154 |
+
other=1,
|
| 1155 |
+
)
|
| 1156 |
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
| 1157 |
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
| 1158 |
# to multiply with softmax_scale here.
|
| 1159 |
# we assume mask already implies the causal masking
|
| 1160 |
+
qk = qk * qk_scale
|
| 1161 |
+
qk = tl.where(window_mask, float("-inf"), qk)
|
| 1162 |
m_ij = tl.maximum(tl.max(qk, 1), m_i)
|
| 1163 |
+
masked_out_rows = (m_ij == float("-inf"))
|
| 1164 |
+
m_ij_masked = tl.where(masked_out_rows, 0, m_ij)
|
| 1165 |
+
p = tl.exp2(qk - m_ij_masked[:, None])
|
| 1166 |
else:
|
| 1167 |
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
|
| 1168 |
m_ij = tl.maximum(tl.max(qk, 1) * qk_scale, m_i)
|
| 1169 |
+
masked_out_rows = (m_ij == float("-inf"))
|
| 1170 |
+
m_ij_masked = tl.where(masked_out_rows, 0, m_ij)
|
| 1171 |
+
p = tl.exp2(qk * qk_scale - m_ij_masked[:, None])
|
| 1172 |
|
| 1173 |
d_ij = tl.sum(p, 1)
|
| 1174 |
|
| 1175 |
# scale acc_o
|
| 1176 |
+
prev_scale = tl.exp2(m_i - m_ij_masked)
|
| 1177 |
# # -- update output accumulator --
|
| 1178 |
acc_o = acc_o * prev_scale[:, None]
|
| 1179 |
# update acc_o
|
|
|
|
| 1245 |
if not EVEN_C: # Need to mask out otherwise the softmax is wrong
|
| 1246 |
qk += tl.where((start_c + offs_c)[None, :] < nchunks, 0, float("-inf"))
|
| 1247 |
|
| 1248 |
+
if MASK_TYPE == 1:
|
| 1249 |
+
if EVEN_C & EVEN_M:
|
| 1250 |
+
chunk_mask = tl.load(
|
| 1251 |
+
chunk_mask_ptrs + start_c
|
| 1252 |
+
)
|
| 1253 |
+
else:
|
| 1254 |
+
chunk_mask = tl.load(
|
| 1255 |
+
chunk_mask_ptrs + start_c,
|
| 1256 |
+
mask=(offs_m[:, None] < seqlen_q) & ((start_c + offs_c)[None, :] < nchunks),
|
| 1257 |
+
other=1,
|
| 1258 |
+
)
|
| 1259 |
+
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
| 1260 |
+
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
| 1261 |
+
# to multiply with softmax_scale here.
|
| 1262 |
+
# we assume mask already implies the causal masking
|
| 1263 |
+
qk = qk * qk_scale
|
| 1264 |
+
qk = tl.where(chunk_mask, float("-inf"), qk)
|
| 1265 |
+
m_ij = tl.maximum(tl.max(qk, 1), m_i)
|
| 1266 |
+
masked_out_rows = (m_ij == float("-inf"))
|
| 1267 |
+
m_ij_masked = tl.where(masked_out_rows, 0, m_ij)
|
| 1268 |
+
p = tl.exp2(qk - m_ij_masked[:, None])
|
| 1269 |
+
else:
|
| 1270 |
+
m_ij = tl.maximum(tl.max(qk, 1) * qk_scale, m_i)
|
| 1271 |
+
masked_out_rows = (m_ij == float("-inf"))
|
| 1272 |
+
m_ij_masked = tl.where(masked_out_rows, 0, m_ij)
|
| 1273 |
+
p = tl.exp2(qk * qk_scale - m_ij_masked[:, None])
|
| 1274 |
|
| 1275 |
d_ij = tl.sum(p, 1)
|
| 1276 |
|
| 1277 |
# scale acc_o
|
| 1278 |
+
prev_scale = tl.exp2(m_i - m_ij_masked)
|
| 1279 |
# # -- update output accumulator --
|
| 1280 |
acc_o = acc_o * prev_scale[:, None]
|
| 1281 |
# update acc_o
|
|
|
|
| 1311 |
d_i = d_i * prev_scale + d_ij
|
| 1312 |
m_i = m_ij
|
| 1313 |
|
| 1314 |
+
# for rows that are all -inf, set d_i to 1.0
|
| 1315 |
+
d_i = tl.where(d_i == 0.0, 1.0, d_i)
|
| 1316 |
+
# multiply by log(2)
|
| 1317 |
+
lse_m = (m_i + tl.math.log2(d_i)) * 0.6931471805599453
|
| 1318 |
acc_o = acc_o / d_i[:, None]
|
| 1319 |
# TODO: understand why rematerialize offsets to save registers?
|
| 1320 |
start_m = tl.program_id(0)
|
|
|
|
| 1347 |
out_ptrs, acc_o,
|
| 1348 |
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)
|
| 1349 |
)
|
| 1350 |
+
lse_ptrs = (
|
| 1351 |
+
LSE +
|
| 1352 |
+
off_b * stride_lse_b +
|
| 1353 |
+
off_h * stride_lse_h +
|
| 1354 |
+
offs_m
|
| 1355 |
+
)
|
| 1356 |
+
if EVEN_M:
|
| 1357 |
+
tl.store(
|
| 1358 |
+
lse_ptrs, lse_m,
|
| 1359 |
+
)
|
| 1360 |
+
else:
|
| 1361 |
+
tl.store(
|
| 1362 |
+
lse_ptrs, lse_m,
|
| 1363 |
+
mask=offs_m < seqlen_q
|
| 1364 |
+
)
|
| 1365 |
|
| 1366 |
+
def triton_eva_agg_fwd(
|
| 1367 |
+
q, k, v, rfa_k, rfa_v,
|
| 1368 |
+
window_mask,
|
| 1369 |
+
chunk_mask,
|
| 1370 |
+
softmax_scale,
|
| 1371 |
+
window_size,
|
| 1372 |
+
chunks_per_window
|
| 1373 |
+
):
|
| 1374 |
if rfa_k is None and rfa_v is None:
|
| 1375 |
empty_rfa_kv = 1
|
| 1376 |
|
|
|
|
| 1410 |
mask_type = 0
|
| 1411 |
if window_mask is not None:
|
| 1412 |
mask_type = 1
|
| 1413 |
+
assert window_mask.dtype == torch.bool
|
| 1414 |
assert window_mask.is_cuda
|
| 1415 |
assert window_mask.dim() == 4
|
| 1416 |
assert window_mask.shape == (batch, 1, seqlen_q, window_size)
|
| 1417 |
if window_mask.stride(-1) != 1:
|
| 1418 |
window_mask = window_mask.contiguous()
|
| 1419 |
+
|
| 1420 |
+
assert chunk_mask is not None
|
| 1421 |
+
assert chunk_mask.dtype == torch.bool
|
| 1422 |
+
assert chunk_mask.is_cuda
|
| 1423 |
+
assert chunk_mask.dim() == 4
|
| 1424 |
+
assert chunk_mask.shape == (batch, 1, seqlen_q, nchunks)
|
| 1425 |
+
if chunk_mask.stride(-1) != 1:
|
| 1426 |
+
chunk_mask = chunk_mask.contiguous()
|
| 1427 |
+
|
| 1428 |
+
chunk_mask_strides = (
|
| 1429 |
+
(chunk_mask.stride(0), chunk_mask.stride(2))
|
| 1430 |
+
if mask_type == 1 else
|
| 1431 |
+
(0, 0)
|
| 1432 |
+
)
|
| 1433 |
+
window_mask_strides = (
|
| 1434 |
(window_mask.stride(0), window_mask.stride(2))
|
| 1435 |
if mask_type == 1 else
|
| 1436 |
(0, 0)
|
|
|
|
| 1446 |
if empty_rfa_kv == 0 else
|
| 1447 |
(0, 0, 0)
|
| 1448 |
)
|
|
|
|
| 1449 |
|
| 1450 |
o = torch.empty_like(q)
|
| 1451 |
+
lse = torch.empty((q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32)
|
| 1452 |
|
| 1453 |
BLOCK_HEADDIM = max(triton.next_power_of_2(head_dim), 16)
|
| 1454 |
+
|
| 1455 |
+
BLOCK_M, BLOCK_N, num_warps, num_stages = _get_config(q.dtype, head_dim, "fwd")
|
| 1456 |
+
|
| 1457 |
+
assert chunks_per_window >= BLOCK_N, "chunks_per_window must be greater than BLOCK"
|
| 1458 |
+
assert chunks_per_window % BLOCK_N == 0, "chunks_per_window must be a multiple of BLOCK_N"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1459 |
|
| 1460 |
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
| 1461 |
_fwd_eva_agg_kernel[grid](
|
|
|
|
| 1465 |
rfa_k,
|
| 1466 |
rfa_v,
|
| 1467 |
window_mask,
|
| 1468 |
+
chunk_mask,
|
| 1469 |
o,
|
| 1470 |
+
lse,
|
| 1471 |
softmax_scale,
|
| 1472 |
q.stride(0), q.stride(1), q.stride(2),
|
| 1473 |
k.stride(0), k.stride(1), k.stride(2),
|
| 1474 |
v.stride(0), v.stride(1), v.stride(2),
|
| 1475 |
rfa_k_strides[0], rfa_k_strides[1], rfa_k_strides[2],
|
| 1476 |
rfa_v_strides[0], rfa_v_strides[1], rfa_v_strides[2],
|
| 1477 |
+
window_mask_strides[0], window_mask_strides[1],
|
| 1478 |
+
chunk_mask_strides[0], chunk_mask_strides[1],
|
| 1479 |
o.stride(0), o.stride(1), o.stride(2),
|
| 1480 |
+
lse.stride(0), lse.stride(1),
|
| 1481 |
+
nheads,
|
| 1482 |
+
seqlen_q,
|
| 1483 |
+
seqlen_k,
|
| 1484 |
+
nchunks,
|
| 1485 |
+
head_dim,
|
| 1486 |
+
chunks_per_window,
|
| 1487 |
+
window_size,
|
| 1488 |
+
mask_type,
|
| 1489 |
+
empty_rfa_kv,
|
| 1490 |
+
BLOCK_HEADDIM,
|
| 1491 |
+
BLOCK_M=BLOCK_M,
|
| 1492 |
+
BLOCK_N=BLOCK_N,
|
| 1493 |
+
num_warps=num_warps,
|
| 1494 |
+
num_stages=num_stages,
|
| 1495 |
+
)
|
| 1496 |
+
return o, lse
|
| 1497 |
+
|
| 1498 |
+
def triton_eva_agg_bwd(
|
| 1499 |
+
do,
|
| 1500 |
+
q, k, v, rfa_k, rfa_v,
|
| 1501 |
+
window_mask, chunk_mask,
|
| 1502 |
+
o, lse,
|
| 1503 |
+
dq, dk, dv, d_rfa_k, d_rfa_v,
|
| 1504 |
+
softmax_scale,
|
| 1505 |
+
window_size,
|
| 1506 |
+
chunks_per_window,
|
| 1507 |
+
empty_rfa_kv,
|
| 1508 |
+
mask_type,
|
| 1509 |
+
):
|
| 1510 |
+
if do.stride(-1) != 1:
|
| 1511 |
+
do = do.contiguous()
|
| 1512 |
+
|
| 1513 |
+
# shape constraints
|
| 1514 |
+
batch, nheads, seqlen_q, head_dim = q.shape
|
| 1515 |
+
_, _, seqlen_k, _ = k.shape
|
| 1516 |
+
if empty_rfa_kv == 0:
|
| 1517 |
+
nchunks = rfa_k.shape[-2]
|
| 1518 |
+
assert rfa_k.shape == (batch, nheads, nchunks, head_dim)
|
| 1519 |
+
assert rfa_v.shape == (batch, nheads, nchunks, head_dim)
|
| 1520 |
+
assert d_rfa_k.stride(-1) == d_rfa_v.stride(-1) == 1
|
| 1521 |
+
assert q.dtype == k.dtype == v.dtype == rfa_k.dtype == rfa_v.dtype
|
| 1522 |
+
else:
|
| 1523 |
+
nchunks = 0
|
| 1524 |
+
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same type"
|
| 1525 |
+
|
| 1526 |
+
assert lse.shape == (batch, nheads, seqlen_q)
|
| 1527 |
+
assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == rfa_k.stride(-1) == rfa_v.stride(-1) == 1
|
| 1528 |
+
assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
|
| 1529 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(head_dim)
|
| 1530 |
+
|
| 1531 |
+
assert head_dim <= 128, "We only test head dimensions up to 128"
|
| 1532 |
+
|
| 1533 |
+
window_mask_strides = (
|
| 1534 |
+
(window_mask.stride(0), window_mask.stride(2))
|
| 1535 |
+
if mask_type == 1 else
|
| 1536 |
+
(0, 0)
|
| 1537 |
+
)
|
| 1538 |
+
chunk_mask_strides = (
|
| 1539 |
+
(chunk_mask.stride(0), chunk_mask.stride(2))
|
| 1540 |
+
if mask_type == 1 else
|
| 1541 |
+
(0, 0)
|
| 1542 |
+
)
|
| 1543 |
+
|
| 1544 |
+
rfa_k_strides = (
|
| 1545 |
+
(rfa_k.stride(0), rfa_k.stride(1), rfa_k.stride(2))
|
| 1546 |
+
if empty_rfa_kv == 0 else
|
| 1547 |
+
(0, 0, 0)
|
| 1548 |
+
)
|
| 1549 |
+
rfa_v_strides = (
|
| 1550 |
+
(rfa_v.stride(0), rfa_v.stride(1), rfa_v.stride(2))
|
| 1551 |
+
if empty_rfa_kv == 0 else
|
| 1552 |
+
(0, 0, 0)
|
| 1553 |
+
)
|
| 1554 |
+
|
| 1555 |
+
d_rfa_k_strides = (
|
| 1556 |
+
(d_rfa_k.stride(0), d_rfa_k.stride(1), d_rfa_k.stride(2))
|
| 1557 |
+
if empty_rfa_kv == 0 else
|
| 1558 |
+
(0, 0, 0)
|
| 1559 |
+
)
|
| 1560 |
+
d_rfa_v_strides = (
|
| 1561 |
+
(d_rfa_v.stride(0), d_rfa_v.stride(1), d_rfa_v.stride(2))
|
| 1562 |
+
if empty_rfa_kv == 0 else
|
| 1563 |
+
(0, 0, 0)
|
| 1564 |
+
)
|
| 1565 |
+
|
| 1566 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(head_dim), 16)
|
| 1567 |
+
|
| 1568 |
+
do_t_o = torch.sum(do.to(torch.float32) * o.to(torch.float32), dim=-1).to(do.dtype)
|
| 1569 |
+
|
| 1570 |
+
BLOCK_M, BLOCK_N, num_warps, num_stages = _get_config(q.dtype, head_dim, "bwd_dq")
|
| 1571 |
+
|
| 1572 |
+
assert chunks_per_window >= BLOCK_N, "chunks_per_window must be greater than BLOCK"
|
| 1573 |
+
assert chunks_per_window % BLOCK_N == 0, "chunks_per_window must be a multiple of BLOCK"
|
| 1574 |
+
grid = lambda META: (
|
| 1575 |
+
triton.cdiv(seqlen_q, META["BLOCK_M"]),
|
| 1576 |
+
batch * nheads,
|
| 1577 |
+
)
|
| 1578 |
+
_bwd_eva_agg_kernel_dq[grid](
|
| 1579 |
+
q,
|
| 1580 |
+
k,
|
| 1581 |
+
v,
|
| 1582 |
+
rfa_k,
|
| 1583 |
+
rfa_v,
|
| 1584 |
+
window_mask,
|
| 1585 |
+
chunk_mask,
|
| 1586 |
+
do,
|
| 1587 |
+
lse,
|
| 1588 |
+
do_t_o,
|
| 1589 |
+
dq,
|
| 1590 |
+
softmax_scale,
|
| 1591 |
+
q.stride(0), q.stride(1), q.stride(2),
|
| 1592 |
+
k.stride(0), k.stride(1), k.stride(2),
|
| 1593 |
+
v.stride(0), v.stride(1), v.stride(2),
|
| 1594 |
+
rfa_k_strides[0], rfa_k_strides[1], rfa_k_strides[2],
|
| 1595 |
+
rfa_v_strides[0], rfa_v_strides[1], rfa_v_strides[2],
|
| 1596 |
+
window_mask_strides[0], window_mask_strides[1],
|
| 1597 |
+
chunk_mask_strides[0], chunk_mask_strides[1],
|
| 1598 |
+
do.stride(0), do.stride(1), do.stride(2),
|
| 1599 |
+
lse.stride(0), lse.stride(1),
|
| 1600 |
+
do_t_o.stride(0), do_t_o.stride(1),
|
| 1601 |
+
dq.stride(0), dq.stride(1), dq.stride(2),
|
| 1602 |
nheads,
|
| 1603 |
seqlen_q,
|
| 1604 |
seqlen_k,
|
| 1605 |
nchunks,
|
| 1606 |
head_dim,
|
|
|
|
|
|
|
|
|
|
| 1607 |
chunks_per_window,
|
| 1608 |
window_size,
|
| 1609 |
mask_type,
|
| 1610 |
empty_rfa_kv,
|
| 1611 |
BLOCK_HEADDIM,
|
| 1612 |
+
BLOCK_M=BLOCK_M,
|
| 1613 |
+
BLOCK_N=BLOCK_N,
|
| 1614 |
+
num_warps=num_warps,
|
| 1615 |
+
num_stages=num_stages,
|
| 1616 |
+
)
|
| 1617 |
+
|
| 1618 |
+
BLOCK_M, BLOCK_N, num_warps, num_stages = _get_config(q.dtype, head_dim, "bwd_dkdv")
|
| 1619 |
+
grid = lambda META: (
|
| 1620 |
+
triton.cdiv(seqlen_k, META["BLOCK_N"]),
|
| 1621 |
+
batch * nheads,
|
| 1622 |
+
)
|
| 1623 |
+
_bwd_eva_agg_kernel_dkdv[grid](
|
| 1624 |
+
q,
|
| 1625 |
+
k,
|
| 1626 |
+
v,
|
| 1627 |
+
window_mask,
|
| 1628 |
+
do,
|
| 1629 |
+
lse,
|
| 1630 |
+
do_t_o,
|
| 1631 |
+
dk,
|
| 1632 |
+
dv,
|
| 1633 |
+
softmax_scale,
|
| 1634 |
+
q.stride(0), q.stride(1), q.stride(2),
|
| 1635 |
+
k.stride(0), k.stride(1), k.stride(2),
|
| 1636 |
+
v.stride(0), v.stride(1), v.stride(2),
|
| 1637 |
+
window_mask_strides[0], window_mask_strides[1],
|
| 1638 |
+
do.stride(0), do.stride(1), do.stride(2),
|
| 1639 |
+
lse.stride(0), lse.stride(1),
|
| 1640 |
+
do_t_o.stride(0), do_t_o.stride(1),
|
| 1641 |
+
dk.stride(0), dk.stride(1), dk.stride(2),
|
| 1642 |
+
dv.stride(0), dv.stride(1), dv.stride(2),
|
| 1643 |
+
nheads,
|
| 1644 |
+
seqlen_q,
|
| 1645 |
+
seqlen_k,
|
| 1646 |
+
head_dim,
|
| 1647 |
+
window_size,
|
| 1648 |
+
mask_type,
|
| 1649 |
+
BLOCK_HEADDIM,
|
| 1650 |
+
BLOCK_M=BLOCK_M,
|
| 1651 |
+
BLOCK_N=BLOCK_N,
|
| 1652 |
num_warps=num_warps,
|
| 1653 |
+
num_stages=num_stages,
|
| 1654 |
+
)
|
| 1655 |
+
if empty_rfa_kv == 0:
|
| 1656 |
+
BLOCK_M, BLOCK_N, num_warps, num_stages = _get_config(q.dtype, head_dim, "bwd_drfa_kv")
|
| 1657 |
+
grid = lambda META: (
|
| 1658 |
+
triton.cdiv(nchunks, META["BLOCK_N"]),
|
| 1659 |
+
batch * nheads,
|
| 1660 |
+
)
|
| 1661 |
+
_bwd_eva_agg_kernel_drfa_kv[grid](
|
| 1662 |
+
q,
|
| 1663 |
+
rfa_k,
|
| 1664 |
+
rfa_v,
|
| 1665 |
+
chunk_mask,
|
| 1666 |
+
do,
|
| 1667 |
+
lse,
|
| 1668 |
+
do_t_o,
|
| 1669 |
+
d_rfa_k,
|
| 1670 |
+
d_rfa_v,
|
| 1671 |
+
softmax_scale,
|
| 1672 |
+
q.stride(0), q.stride(1), q.stride(2),
|
| 1673 |
+
rfa_k_strides[0], rfa_k_strides[1], rfa_k_strides[2],
|
| 1674 |
+
rfa_v_strides[0], rfa_v_strides[1], rfa_v_strides[2],
|
| 1675 |
+
chunk_mask_strides[0], chunk_mask_strides[1],
|
| 1676 |
+
do.stride(0), do.stride(1), do.stride(2),
|
| 1677 |
+
lse.stride(0), lse.stride(1),
|
| 1678 |
+
do_t_o.stride(0), do_t_o.stride(1),
|
| 1679 |
+
d_rfa_k_strides[0], d_rfa_k_strides[1], d_rfa_k_strides[2],
|
| 1680 |
+
d_rfa_v_strides[0], d_rfa_v_strides[1], d_rfa_v_strides[2],
|
| 1681 |
+
nheads,
|
| 1682 |
+
seqlen_q,
|
| 1683 |
+
nchunks,
|
| 1684 |
+
head_dim,
|
| 1685 |
+
chunks_per_window,
|
| 1686 |
+
window_size,
|
| 1687 |
+
mask_type,
|
| 1688 |
+
BLOCK_HEADDIM,
|
| 1689 |
+
BLOCK_M=BLOCK_M,
|
| 1690 |
+
BLOCK_N=BLOCK_N,
|
| 1691 |
+
num_warps=num_warps,
|
| 1692 |
+
num_stages=num_stages,
|
| 1693 |
+
)
|
| 1694 |
+
|
| 1695 |
+
|
| 1696 |
+
class EvaAggFunc(torch.autograd.Function):
|
| 1697 |
+
@staticmethod
|
| 1698 |
+
def forward(ctx, q, k, v, rfa_k, rfa_v, window_mask, chunk_mask, softmax_scale=None, window_size=None, chunks_per_window=None):
|
| 1699 |
+
if rfa_k is None and rfa_v is None:
|
| 1700 |
+
empty_rfa_kv = 1
|
| 1701 |
+
else:
|
| 1702 |
+
assert rfa_k is not None and rfa_v is not None, "Both rfa_k and rfa_v must either be None or have values at the same time."
|
| 1703 |
+
empty_rfa_kv = 0
|
| 1704 |
+
|
| 1705 |
+
if window_mask is not None:
|
| 1706 |
+
mask_type = 1
|
| 1707 |
+
else:
|
| 1708 |
+
mask_type = 0
|
| 1709 |
+
o, lse = triton_eva_agg_fwd(
|
| 1710 |
+
q, k, v, rfa_k, rfa_v, window_mask, chunk_mask, softmax_scale, window_size, chunks_per_window
|
| 1711 |
+
)
|
| 1712 |
+
ctx.save_for_backward(q, k, v, o, lse, rfa_k, rfa_v, window_mask, chunk_mask)
|
| 1713 |
+
ctx.softmax_scale = softmax_scale
|
| 1714 |
+
ctx.window_size = window_size
|
| 1715 |
+
ctx.chunks_per_window = chunks_per_window
|
| 1716 |
+
ctx.empty_rfa_kv = empty_rfa_kv
|
| 1717 |
+
ctx.mask_type = mask_type
|
| 1718 |
+
return o
|
| 1719 |
+
|
| 1720 |
+
@staticmethod
|
| 1721 |
+
def backward(ctx, do):
|
| 1722 |
+
q, k, v, o, lse, rfa_k, rfa_v, window_mask, chunk_mask = ctx.saved_tensors
|
| 1723 |
+
dq = torch.empty_like(q)
|
| 1724 |
+
dk = torch.empty_like(k)
|
| 1725 |
+
dv = torch.empty_like(v)
|
| 1726 |
+
if ctx.empty_rfa_kv == 0:
|
| 1727 |
+
d_rfa_k = torch.empty_like(rfa_k)
|
| 1728 |
+
d_rfa_v = torch.empty_like(rfa_v)
|
| 1729 |
+
else:
|
| 1730 |
+
d_rfa_k = None
|
| 1731 |
+
d_rfa_v = None
|
| 1732 |
+
triton_eva_agg_bwd(
|
| 1733 |
+
do,
|
| 1734 |
+
q,
|
| 1735 |
+
k,
|
| 1736 |
+
v,
|
| 1737 |
+
rfa_k,
|
| 1738 |
+
rfa_v,
|
| 1739 |
+
window_mask,
|
| 1740 |
+
chunk_mask,
|
| 1741 |
+
o,
|
| 1742 |
+
lse,
|
| 1743 |
+
dq,
|
| 1744 |
+
dk,
|
| 1745 |
+
dv,
|
| 1746 |
+
d_rfa_k,
|
| 1747 |
+
d_rfa_v,
|
| 1748 |
+
softmax_scale=ctx.softmax_scale,
|
| 1749 |
+
window_size=ctx.window_size,
|
| 1750 |
+
chunks_per_window=ctx.chunks_per_window,
|
| 1751 |
+
empty_rfa_kv=ctx.empty_rfa_kv,
|
| 1752 |
+
mask_type=ctx.mask_type,
|
| 1753 |
+
)
|
| 1754 |
+
return dq, dk, dv, d_rfa_k, d_rfa_v, None, None, None, None, None
|
| 1755 |
+
|
| 1756 |
+
|
| 1757 |
+
def eva_agg_func_triton(
|
| 1758 |
+
q, k, v, rfa_k, rfa_v,
|
| 1759 |
+
window_mask, chunk_mask,
|
| 1760 |
+
softmax_scale=None, window_size=None, chunks_per_window=None,
|
| 1761 |
+
):
|
| 1762 |
+
return EvaAggFunc.apply(
|
| 1763 |
+
q, k, v, rfa_k, rfa_v,
|
| 1764 |
+
window_mask, chunk_mask,
|
| 1765 |
+
softmax_scale, window_size, chunks_per_window,
|
| 1766 |
)
|
|
|
eva_prep_kv_kernel.py
CHANGED
|
@@ -16,7 +16,7 @@ def _fwd_eva_prep_kv_kernel(
|
|
| 16 |
V, # [b, h, n, d]
|
| 17 |
PARAM_MU, # [1, h, 1, 1, d]
|
| 18 |
PARAM_PHI, # [1, h, 1, 1, d]
|
| 19 |
-
|
| 20 |
Out_RFA_K, # [b, h, c, d]
|
| 21 |
Out_RFA_V, # [b, h, c, d]
|
| 22 |
softmax_scale,
|
|
@@ -31,8 +31,6 @@ def _fwd_eva_prep_kv_kernel(
|
|
| 31 |
seqlen,
|
| 32 |
nchunks,
|
| 33 |
headdim,
|
| 34 |
-
CACHE_KEY_SEQLEN, # TODO: why keeping this
|
| 35 |
-
CACHE_KEY_NCHUNKS, # TODO: why keeping this
|
| 36 |
CHUNKS_PER_BLOCK: tl.constexpr,
|
| 37 |
CHUNK_SIZE: tl.constexpr,
|
| 38 |
MASK_TYPE: tl.constexpr,
|
|
@@ -91,7 +89,7 @@ def _fwd_eva_prep_kv_kernel(
|
|
| 91 |
log2e = 1.4426950408889634
|
| 92 |
if MASK_TYPE == 1:
|
| 93 |
m_ptrs = (
|
| 94 |
-
|
| 95 |
offs_b * stride_mb +
|
| 96 |
(
|
| 97 |
(
|
|
@@ -144,7 +142,7 @@ def _fwd_eva_prep_kv_kernel(
|
|
| 144 |
if EVEN_N:
|
| 145 |
mask = tl.load(
|
| 146 |
m_ptrs
|
| 147 |
-
)
|
| 148 |
else:
|
| 149 |
mask = tl.load(
|
| 150 |
m_ptrs,
|
|
@@ -153,12 +151,17 @@ def _fwd_eva_prep_kv_kernel(
|
|
| 153 |
offs_c[:, None] * CHUNK_SIZE +
|
| 154 |
offs_m[None, :]
|
| 155 |
) < seqlen,
|
| 156 |
-
other=
|
| 157 |
-
)
|
| 158 |
-
rfa_k_c_w =
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
rfa_k_c = tl.sum(k * rfa_k_c_w[:, :, None].to(k.dtype), axis=-2)
|
| 163 |
# TODO: understand why rematerialize offsets to save registers?
|
| 164 |
offs_out_c = start_n * CHUNKS_PER_BLOCK + tl.arange(0, CHUNKS_PER_BLOCK)
|
|
@@ -209,7 +212,7 @@ def _fwd_eva_prep_kv_kernel(
|
|
| 209 |
)
|
| 210 |
|
| 211 |
if MASK_TYPE == 1:
|
| 212 |
-
rfa_v_c_w =
|
| 213 |
|
| 214 |
if EVEN_N:
|
| 215 |
if EVEN_HEADDIM:
|
|
@@ -246,8 +249,14 @@ def _fwd_eva_prep_kv_kernel(
|
|
| 246 |
other=0.0
|
| 247 |
)
|
| 248 |
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
rfa_v_c = tl.sum(v * rfa_v_c_w[:, :, None].to(v.dtype), axis=-2)
|
| 252 |
|
| 253 |
offs_out_c = start_n * CHUNKS_PER_BLOCK + tl.arange(0, CHUNKS_PER_BLOCK)
|
|
@@ -279,7 +288,529 @@ def _fwd_eva_prep_kv_kernel(
|
|
| 279 |
mask=(offs_out_c[:, None] < nchunks) & (offs_d[None, :] < headdim)
|
| 280 |
)
|
| 281 |
|
| 282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
k, v, param_mu, param_phi = [
|
| 284 |
x if x.stride(-1) == 1 else x.contiguous()
|
| 285 |
for x in [k, v, param_mu, param_phi]
|
|
@@ -300,16 +831,16 @@ def triton_eva_prep_kv_fwd(k, v, param_mu, param_phi, chunk_mask, softmax_scale,
|
|
| 300 |
softmax_scale = softmax_scale or 1.0 / math.sqrt(head_dim)
|
| 301 |
|
| 302 |
mask_type = 0
|
| 303 |
-
if
|
| 304 |
mask_type = 1
|
| 305 |
-
assert
|
| 306 |
-
assert
|
| 307 |
-
assert
|
| 308 |
-
assert
|
| 309 |
-
if
|
| 310 |
-
|
| 311 |
mask_strides = (
|
| 312 |
-
(
|
| 313 |
if mask_type == 1 else
|
| 314 |
(0, 0)
|
| 315 |
)
|
|
@@ -329,7 +860,7 @@ def triton_eva_prep_kv_fwd(k, v, param_mu, param_phi, chunk_mask, softmax_scale,
|
|
| 329 |
v,
|
| 330 |
param_mu,
|
| 331 |
param_phi,
|
| 332 |
-
|
| 333 |
out_rfa_k,
|
| 334 |
out_rfa_v,
|
| 335 |
softmax_scale,
|
|
@@ -344,8 +875,6 @@ def triton_eva_prep_kv_fwd(k, v, param_mu, param_phi, chunk_mask, softmax_scale,
|
|
| 344 |
seqlen,
|
| 345 |
nchunks,
|
| 346 |
head_dim,
|
| 347 |
-
seqlen // 32,
|
| 348 |
-
nchunks // 32,
|
| 349 |
chunks_per_block,
|
| 350 |
chunksize,
|
| 351 |
mask_type,
|
|
@@ -355,3 +884,134 @@ def triton_eva_prep_kv_fwd(k, v, param_mu, param_phi, chunk_mask, softmax_scale,
|
|
| 355 |
num_stages=1,
|
| 356 |
)
|
| 357 |
return out_rfa_k, out_rfa_v
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
V, # [b, h, n, d]
|
| 17 |
PARAM_MU, # [1, h, 1, 1, d]
|
| 18 |
PARAM_PHI, # [1, h, 1, 1, d]
|
| 19 |
+
Mask, # [b, h, n, 1]
|
| 20 |
Out_RFA_K, # [b, h, c, d]
|
| 21 |
Out_RFA_V, # [b, h, c, d]
|
| 22 |
softmax_scale,
|
|
|
|
| 31 |
seqlen,
|
| 32 |
nchunks,
|
| 33 |
headdim,
|
|
|
|
|
|
|
| 34 |
CHUNKS_PER_BLOCK: tl.constexpr,
|
| 35 |
CHUNK_SIZE: tl.constexpr,
|
| 36 |
MASK_TYPE: tl.constexpr,
|
|
|
|
| 89 |
log2e = 1.4426950408889634
|
| 90 |
if MASK_TYPE == 1:
|
| 91 |
m_ptrs = (
|
| 92 |
+
Mask +
|
| 93 |
offs_b * stride_mb +
|
| 94 |
(
|
| 95 |
(
|
|
|
|
| 142 |
if EVEN_N:
|
| 143 |
mask = tl.load(
|
| 144 |
m_ptrs
|
| 145 |
+
)
|
| 146 |
else:
|
| 147 |
mask = tl.load(
|
| 148 |
m_ptrs,
|
|
|
|
| 151 |
offs_c[:, None] * CHUNK_SIZE +
|
| 152 |
offs_m[None, :]
|
| 153 |
) < seqlen,
|
| 154 |
+
other=1,
|
| 155 |
+
)
|
| 156 |
+
rfa_k_c_w = tl.where(mask, float("-inf"), rfa_k_c_w)
|
| 157 |
+
|
| 158 |
+
m_rfa_k_c_w = tl.max(rfa_k_c_w, axis=-1)
|
| 159 |
+
masked_out_rows_rfa_k = (m_rfa_k_c_w == float("-inf"))
|
| 160 |
+
m_rfa_k_c_w_masked = tl.where(masked_out_rows_rfa_k, 0, m_rfa_k_c_w)
|
| 161 |
+
rfa_k_c_w = tl.exp2(rfa_k_c_w - m_rfa_k_c_w_masked[:, None])
|
| 162 |
+
denom_k = tl.sum(rfa_k_c_w, axis=-1)
|
| 163 |
+
denom_k = tl.where(denom_k == 0.0, 1.0, denom_k)
|
| 164 |
+
rfa_k_c_w = rfa_k_c_w / denom_k[:, None]
|
| 165 |
rfa_k_c = tl.sum(k * rfa_k_c_w[:, :, None].to(k.dtype), axis=-2)
|
| 166 |
# TODO: understand why rematerialize offsets to save registers?
|
| 167 |
offs_out_c = start_n * CHUNKS_PER_BLOCK + tl.arange(0, CHUNKS_PER_BLOCK)
|
|
|
|
| 212 |
)
|
| 213 |
|
| 214 |
if MASK_TYPE == 1:
|
| 215 |
+
rfa_v_c_w = tl.where(mask, float("-inf"), rfa_v_c_w)
|
| 216 |
|
| 217 |
if EVEN_N:
|
| 218 |
if EVEN_HEADDIM:
|
|
|
|
| 249 |
other=0.0
|
| 250 |
)
|
| 251 |
|
| 252 |
+
|
| 253 |
+
m_rfa_v_c_w = tl.max(rfa_v_c_w, axis=-1)
|
| 254 |
+
masked_out_rows_rfa_v = (m_rfa_v_c_w == float("-inf"))
|
| 255 |
+
m_rfa_v_c_w_masked = tl.where(masked_out_rows_rfa_v, 0, m_rfa_v_c_w)
|
| 256 |
+
rfa_v_c_w = tl.exp2(rfa_v_c_w - m_rfa_v_c_w_masked[:, None])
|
| 257 |
+
denom_v = tl.sum(rfa_v_c_w, axis=-1)
|
| 258 |
+
denom_v = tl.where(denom_v == 0.0, 1.0, denom_v)
|
| 259 |
+
rfa_v_c_w = rfa_v_c_w / denom_v[:, None]
|
| 260 |
rfa_v_c = tl.sum(v * rfa_v_c_w[:, :, None].to(v.dtype), axis=-2)
|
| 261 |
|
| 262 |
offs_out_c = start_n * CHUNKS_PER_BLOCK + tl.arange(0, CHUNKS_PER_BLOCK)
|
|
|
|
| 288 |
mask=(offs_out_c[:, None] < nchunks) & (offs_d[None, :] < headdim)
|
| 289 |
)
|
| 290 |
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
@triton.heuristics(
|
| 294 |
+
{
|
| 295 |
+
"EVEN_N": lambda args: args["seqlen"] % args["BLOCK_N"] == 0,
|
| 296 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
| 297 |
+
}
|
| 298 |
+
)
|
| 299 |
+
@triton.jit
|
| 300 |
+
def _bwd_eva_prep_kv_kernel(
|
| 301 |
+
RFA_K, # [b, h, c, d]
|
| 302 |
+
RFA_V, # [b, h, c, d]
|
| 303 |
+
K, # [b, h, n, d]
|
| 304 |
+
V, # [b, h, n, d]
|
| 305 |
+
PARAM_MU, # [1, h, 1, 1, d]
|
| 306 |
+
PARAM_PHI, # [1, h, 1, 1, d]
|
| 307 |
+
Mask, # [b, h, n, 1]
|
| 308 |
+
D_RFA_K, # [b, h, c, d]
|
| 309 |
+
D_RFA_V, # [b, h, c, d]
|
| 310 |
+
D_K, # [b, h, n, d]
|
| 311 |
+
D_V, # [b, h, n, d]
|
| 312 |
+
D_PARAM_MU_PARTIAL, # [b, h, g, d]
|
| 313 |
+
D_PARAM_PHI_PARTIAL, # [b, h, g, d]
|
| 314 |
+
softmax_scale,
|
| 315 |
+
stride_rfa_k_b, stride_rfa_k_h, stride_rfa_k_c,
|
| 316 |
+
stride_rfa_v_b, stride_rfa_v_h, stride_rfa_v_c,
|
| 317 |
+
stride_kb, stride_kh, stride_kn,
|
| 318 |
+
stride_vb, stride_vh, stride_vn,
|
| 319 |
+
stride_mu_h,
|
| 320 |
+
stride_phi_h,
|
| 321 |
+
stride_mb, stride_mn,
|
| 322 |
+
stride_d_rfa_k_b, stride_d_rfa_k_h, stride_d_rfa_k_c,
|
| 323 |
+
stride_d_rfa_v_b, stride_d_rfa_v_h, stride_d_rfa_v_c,
|
| 324 |
+
stride_d_k_b, stride_d_k_h, stride_d_k_n,
|
| 325 |
+
stride_d_v_b, stride_d_v_h, stride_d_v_n,
|
| 326 |
+
stride_d_mu_b, stride_d_mu_h, stride_d_mu_g,
|
| 327 |
+
stride_d_phi_b, stride_d_phi_h, stride_d_phi_g,
|
| 328 |
+
nheads,
|
| 329 |
+
seqlen,
|
| 330 |
+
nchunks,
|
| 331 |
+
headdim,
|
| 332 |
+
CHUNKS_PER_BLOCK: tl.constexpr,
|
| 333 |
+
CHUNK_SIZE: tl.constexpr,
|
| 334 |
+
MASK_TYPE: tl.constexpr,
|
| 335 |
+
BLOCK_HEADDIM: tl.constexpr,
|
| 336 |
+
EVEN_N: tl.constexpr,
|
| 337 |
+
EVEN_HEADDIM: tl.constexpr,
|
| 338 |
+
BLOCK_N: tl.constexpr,
|
| 339 |
+
):
|
| 340 |
+
start_n = tl.program_id(0)
|
| 341 |
+
offs_bh = tl.program_id(1)
|
| 342 |
+
offs_h = offs_bh % nheads
|
| 343 |
+
offs_b = offs_bh // nheads
|
| 344 |
+
# initialize offsets
|
| 345 |
+
# we load BLOCK_N keys and values each time, and
|
| 346 |
+
# reshape it to [CHUNKS_PER_BLOCK, CHUNK_SIZE]
|
| 347 |
+
offs_c = tl.arange(0, CHUNKS_PER_BLOCK)
|
| 348 |
+
offs_m = tl.arange(0, CHUNK_SIZE)
|
| 349 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
| 350 |
+
|
| 351 |
+
offs_rfa_c = start_n * CHUNKS_PER_BLOCK + offs_c
|
| 352 |
+
|
| 353 |
+
k_ptrs = (
|
| 354 |
+
K +
|
| 355 |
+
offs_b * stride_kb +
|
| 356 |
+
offs_h * stride_kh +
|
| 357 |
+
(
|
| 358 |
+
(
|
| 359 |
+
start_n * BLOCK_N +
|
| 360 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
| 361 |
+
offs_m[None, :, None]
|
| 362 |
+
) * stride_kn +
|
| 363 |
+
offs_d[None, None, :]
|
| 364 |
+
)
|
| 365 |
+
)
|
| 366 |
+
rfa_k_ptrs = (
|
| 367 |
+
RFA_K +
|
| 368 |
+
offs_b * stride_rfa_k_b +
|
| 369 |
+
offs_h * stride_rfa_k_h +
|
| 370 |
+
(offs_rfa_c[:, None] * stride_rfa_k_c + offs_d[None, :])
|
| 371 |
+
)
|
| 372 |
+
rfa_v_ptrs = (
|
| 373 |
+
RFA_V +
|
| 374 |
+
offs_b * stride_rfa_v_b +
|
| 375 |
+
offs_h * stride_rfa_v_h +
|
| 376 |
+
(offs_rfa_c[:, None] * stride_rfa_v_c + offs_d[None, :])
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
d_rfa_k_ptrs = (
|
| 380 |
+
D_RFA_K +
|
| 381 |
+
offs_b * stride_d_rfa_k_b +
|
| 382 |
+
offs_h * stride_d_rfa_k_h +
|
| 383 |
+
(offs_rfa_c[:, None] * stride_d_rfa_k_c + offs_d[None, :])
|
| 384 |
+
)
|
| 385 |
+
d_rfa_v_ptrs = (
|
| 386 |
+
D_RFA_V +
|
| 387 |
+
offs_b * stride_d_rfa_v_b +
|
| 388 |
+
offs_h * stride_d_rfa_v_h +
|
| 389 |
+
(offs_rfa_c[:, None] * stride_d_rfa_v_c + offs_d[None, :])
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
param_mu_ptrs = (
|
| 393 |
+
PARAM_MU +
|
| 394 |
+
offs_h * stride_mu_h +
|
| 395 |
+
offs_d[None, None, :]
|
| 396 |
+
)
|
| 397 |
+
param_phi_ptrs = (
|
| 398 |
+
PARAM_PHI +
|
| 399 |
+
offs_h * stride_phi_h +
|
| 400 |
+
offs_d[None, None, :]
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
log2e = 1.4426950408889634
|
| 404 |
+
if MASK_TYPE == 1:
|
| 405 |
+
m_ptrs = (
|
| 406 |
+
Mask +
|
| 407 |
+
offs_b * stride_mb +
|
| 408 |
+
(
|
| 409 |
+
(
|
| 410 |
+
start_n * BLOCK_N +
|
| 411 |
+
offs_c[:, None] * CHUNK_SIZE +
|
| 412 |
+
offs_m[None, :]
|
| 413 |
+
) * stride_mn
|
| 414 |
+
)
|
| 415 |
+
)
|
| 416 |
+
if EVEN_N:
|
| 417 |
+
if EVEN_HEADDIM:
|
| 418 |
+
k = tl.load(
|
| 419 |
+
k_ptrs
|
| 420 |
+
)
|
| 421 |
+
else:
|
| 422 |
+
k = tl.load(
|
| 423 |
+
k_ptrs,
|
| 424 |
+
mask=offs_d[None, None, :] < headdim,
|
| 425 |
+
other=0.0
|
| 426 |
+
)
|
| 427 |
+
else:
|
| 428 |
+
if EVEN_HEADDIM:
|
| 429 |
+
k = tl.load(
|
| 430 |
+
k_ptrs,
|
| 431 |
+
mask=(
|
| 432 |
+
start_n * BLOCK_N +
|
| 433 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
| 434 |
+
offs_m[None, :, None]
|
| 435 |
+
) < seqlen,
|
| 436 |
+
other=0.0
|
| 437 |
+
)
|
| 438 |
+
else:
|
| 439 |
+
k = tl.load(
|
| 440 |
+
k_ptrs,
|
| 441 |
+
mask=(
|
| 442 |
+
(
|
| 443 |
+
start_n * BLOCK_N +
|
| 444 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
| 445 |
+
offs_m[None, :, None]
|
| 446 |
+
) < seqlen
|
| 447 |
+
) & (offs_d[None, None, :] < headdim),
|
| 448 |
+
other=0.0
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
if EVEN_N:
|
| 452 |
+
if EVEN_HEADDIM:
|
| 453 |
+
rfa_k = tl.load(
|
| 454 |
+
rfa_k_ptrs
|
| 455 |
+
)
|
| 456 |
+
else:
|
| 457 |
+
rfa_k = tl.load(
|
| 458 |
+
rfa_k_ptrs,
|
| 459 |
+
mask=offs_d[None, :] < headdim,
|
| 460 |
+
other=0.0
|
| 461 |
+
)
|
| 462 |
+
else:
|
| 463 |
+
if EVEN_HEADDIM:
|
| 464 |
+
rfa_k = tl.load(
|
| 465 |
+
rfa_k_ptrs,
|
| 466 |
+
mask=offs_rfa_c[:, None] < nchunks,
|
| 467 |
+
other=0.0
|
| 468 |
+
)
|
| 469 |
+
else:
|
| 470 |
+
rfa_k = tl.load(
|
| 471 |
+
rfa_k_ptrs,
|
| 472 |
+
mask=(offs_rfa_c[:, None] < nchunks) & (offs_d[None, :] < headdim),
|
| 473 |
+
other=0.0
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
if EVEN_N:
|
| 477 |
+
if EVEN_HEADDIM:
|
| 478 |
+
d_rfa_k = tl.load(
|
| 479 |
+
d_rfa_k_ptrs
|
| 480 |
+
)
|
| 481 |
+
else:
|
| 482 |
+
d_rfa_k = tl.load(
|
| 483 |
+
d_rfa_k_ptrs,
|
| 484 |
+
mask=offs_d[None, :] < headdim,
|
| 485 |
+
other=0.0
|
| 486 |
+
)
|
| 487 |
+
else:
|
| 488 |
+
if EVEN_HEADDIM:
|
| 489 |
+
d_rfa_k = tl.load(
|
| 490 |
+
d_rfa_k_ptrs,
|
| 491 |
+
mask=offs_rfa_c[:, None] < nchunks,
|
| 492 |
+
other=0.0
|
| 493 |
+
)
|
| 494 |
+
else:
|
| 495 |
+
d_rfa_k = tl.load(
|
| 496 |
+
d_rfa_k_ptrs,
|
| 497 |
+
mask=(offs_rfa_c[:, None] < nchunks) & (offs_d[None, :] < headdim),
|
| 498 |
+
other=0.0
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
param_mu = tl.load(param_mu_ptrs).to(k.dtype)
|
| 502 |
+
mu_c_w = tl.zeros([CHUNKS_PER_BLOCK, CHUNK_SIZE], dtype=tl.float32)
|
| 503 |
+
mu_c_w += tl.sum(k * param_mu, axis=-1)
|
| 504 |
+
mu_c_w *= log2e
|
| 505 |
+
|
| 506 |
+
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
| 507 |
+
mu_c_w += tl.where(
|
| 508 |
+
(
|
| 509 |
+
start_n * BLOCK_N +
|
| 510 |
+
offs_c[:, None] * CHUNK_SIZE +
|
| 511 |
+
offs_m[None, :]
|
| 512 |
+
) < seqlen,
|
| 513 |
+
0,
|
| 514 |
+
float("-inf")
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
if MASK_TYPE == 1:
|
| 518 |
+
if EVEN_N:
|
| 519 |
+
mask = tl.load(
|
| 520 |
+
m_ptrs
|
| 521 |
+
)
|
| 522 |
+
else:
|
| 523 |
+
mask = tl.load(
|
| 524 |
+
m_ptrs,
|
| 525 |
+
mask=(
|
| 526 |
+
start_n * BLOCK_N +
|
| 527 |
+
offs_c[:, None] * CHUNK_SIZE +
|
| 528 |
+
offs_m[None, :]
|
| 529 |
+
) < seqlen,
|
| 530 |
+
other=1,
|
| 531 |
+
)
|
| 532 |
+
mu_c_w = tl.where(mask, float("-inf"), mu_c_w)
|
| 533 |
+
|
| 534 |
+
# [c, w]
|
| 535 |
+
m_mu_c_w = tl.max(mu_c_w, axis=-1)
|
| 536 |
+
masked_out_rows_mu = (m_mu_c_w == float("-inf"))
|
| 537 |
+
m_mu_c_w_masked = tl.where(masked_out_rows_mu, 0, m_mu_c_w)
|
| 538 |
+
mu_c_w = tl.exp2(mu_c_w - m_mu_c_w_masked[:, None])
|
| 539 |
+
denom_mu = tl.sum(mu_c_w, axis=-1)
|
| 540 |
+
denom_mu = tl.where(denom_mu == 0.0, 1.0, denom_mu)
|
| 541 |
+
mu_tilde_c_w = mu_c_w / denom_mu[:, None]
|
| 542 |
+
mu_tilde_c_w = mu_tilde_c_w.to(k.dtype)
|
| 543 |
+
# [c, d] [c, w, d] -> [c, w]
|
| 544 |
+
d_mu_tilde_c_w = tl.sum(d_rfa_k[:, None, :] * k, axis=-1)
|
| 545 |
+
# [c, d] [c, d] -> [c]
|
| 546 |
+
d_out_rfa_k_t_rfa_k = tl.sum(d_rfa_k * rfa_k, axis=-1)[:, None]
|
| 547 |
+
d_mu_c_w = (d_mu_tilde_c_w - d_out_rfa_k_t_rfa_k) * mu_tilde_c_w
|
| 548 |
+
|
| 549 |
+
# [c, w] [c, w, d] -> [d]
|
| 550 |
+
d_param_mu = tl.sum(tl.sum(d_mu_c_w[:, :, None] * k, axis=0), axis=0)
|
| 551 |
+
# [c, w] [c, d] + [c, w] [1, 1, d] -> [c, w, d]
|
| 552 |
+
d_k = mu_tilde_c_w[:, :, None] * d_rfa_k[:, None, :] + d_mu_c_w[:, :, None] * param_mu
|
| 553 |
+
|
| 554 |
+
d_param_mu_partial_ptrs = (
|
| 555 |
+
D_PARAM_MU_PARTIAL +
|
| 556 |
+
offs_b * stride_d_mu_b +
|
| 557 |
+
offs_h * stride_d_mu_h +
|
| 558 |
+
start_n * stride_d_mu_g +
|
| 559 |
+
offs_d
|
| 560 |
+
)
|
| 561 |
+
if EVEN_HEADDIM:
|
| 562 |
+
tl.store(
|
| 563 |
+
d_param_mu_partial_ptrs, d_param_mu
|
| 564 |
+
)
|
| 565 |
+
else:
|
| 566 |
+
tl.store(
|
| 567 |
+
d_param_mu_partial_ptrs, d_param_mu,
|
| 568 |
+
mask=offs_d < headdim
|
| 569 |
+
)
|
| 570 |
+
|
| 571 |
+
|
| 572 |
+
v_ptrs = (
|
| 573 |
+
V +
|
| 574 |
+
offs_b * stride_vb +
|
| 575 |
+
offs_h * stride_vh +
|
| 576 |
+
(
|
| 577 |
+
(
|
| 578 |
+
start_n * BLOCK_N +
|
| 579 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
| 580 |
+
offs_m[None, :, None]
|
| 581 |
+
) * stride_vn +
|
| 582 |
+
offs_d[None, None, :]
|
| 583 |
+
)
|
| 584 |
+
)
|
| 585 |
+
if EVEN_N:
|
| 586 |
+
if EVEN_HEADDIM:
|
| 587 |
+
v = tl.load(
|
| 588 |
+
v_ptrs
|
| 589 |
+
)
|
| 590 |
+
else:
|
| 591 |
+
v = tl.load(
|
| 592 |
+
v_ptrs,
|
| 593 |
+
mask=offs_d[None, None, :] < headdim,
|
| 594 |
+
other=0.0
|
| 595 |
+
)
|
| 596 |
+
else:
|
| 597 |
+
if EVEN_HEADDIM:
|
| 598 |
+
v = tl.load(
|
| 599 |
+
v_ptrs,
|
| 600 |
+
mask=(
|
| 601 |
+
start_n * BLOCK_N +
|
| 602 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
| 603 |
+
offs_m[None, :, None]
|
| 604 |
+
) < seqlen,
|
| 605 |
+
other=0.0
|
| 606 |
+
)
|
| 607 |
+
else:
|
| 608 |
+
v = tl.load(
|
| 609 |
+
v_ptrs,
|
| 610 |
+
mask=(
|
| 611 |
+
(
|
| 612 |
+
start_n * BLOCK_N +
|
| 613 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
| 614 |
+
offs_m[None, :, None]
|
| 615 |
+
) < seqlen
|
| 616 |
+
) & (offs_d[None, None, :] < headdim),
|
| 617 |
+
other=0.0
|
| 618 |
+
)
|
| 619 |
+
|
| 620 |
+
|
| 621 |
+
if EVEN_N:
|
| 622 |
+
if EVEN_HEADDIM:
|
| 623 |
+
rfa_v = tl.load(
|
| 624 |
+
rfa_v_ptrs
|
| 625 |
+
)
|
| 626 |
+
else:
|
| 627 |
+
rfa_v = tl.load(
|
| 628 |
+
rfa_v_ptrs,
|
| 629 |
+
mask=offs_d[None, :] < headdim,
|
| 630 |
+
other=0.0
|
| 631 |
+
)
|
| 632 |
+
else:
|
| 633 |
+
if EVEN_HEADDIM:
|
| 634 |
+
rfa_v = tl.load(
|
| 635 |
+
rfa_v_ptrs,
|
| 636 |
+
mask=offs_rfa_c[:, None] < nchunks,
|
| 637 |
+
other=0.0
|
| 638 |
+
)
|
| 639 |
+
else:
|
| 640 |
+
rfa_v = tl.load(
|
| 641 |
+
rfa_v_ptrs,
|
| 642 |
+
mask=(offs_rfa_c[:, None] < nchunks) & (offs_d[None, :] < headdim),
|
| 643 |
+
other=0.0
|
| 644 |
+
)
|
| 645 |
+
|
| 646 |
+
if EVEN_N:
|
| 647 |
+
if EVEN_HEADDIM:
|
| 648 |
+
d_rfa_v = tl.load(
|
| 649 |
+
d_rfa_v_ptrs
|
| 650 |
+
)
|
| 651 |
+
else:
|
| 652 |
+
d_rfa_v = tl.load(
|
| 653 |
+
d_rfa_v_ptrs,
|
| 654 |
+
mask=offs_d[None, :] < headdim,
|
| 655 |
+
other=0.0
|
| 656 |
+
)
|
| 657 |
+
else:
|
| 658 |
+
if EVEN_HEADDIM:
|
| 659 |
+
d_rfa_v = tl.load(
|
| 660 |
+
d_rfa_v_ptrs,
|
| 661 |
+
mask=offs_rfa_c[:, None] < nchunks,
|
| 662 |
+
other=0.0
|
| 663 |
+
)
|
| 664 |
+
else:
|
| 665 |
+
d_rfa_v = tl.load(
|
| 666 |
+
d_rfa_v_ptrs,
|
| 667 |
+
mask=(offs_rfa_c[:, None] < nchunks) & (offs_d[None, :] < headdim),
|
| 668 |
+
other=0.0
|
| 669 |
+
)
|
| 670 |
+
|
| 671 |
+
param_phi = tl.load(param_phi_ptrs).to(k.dtype)
|
| 672 |
+
phi_c_w = tl.zeros([CHUNKS_PER_BLOCK, CHUNK_SIZE], dtype=tl.float32)
|
| 673 |
+
phi_c_w += tl.sum(k * param_phi, axis=-1)
|
| 674 |
+
phi_c_w -= (0.5 * tl.sum(k * k, axis=-1))
|
| 675 |
+
phi_c_w *= log2e * softmax_scale
|
| 676 |
+
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
| 677 |
+
phi_c_w += tl.where(
|
| 678 |
+
(
|
| 679 |
+
start_n * BLOCK_N +
|
| 680 |
+
offs_c[:, None] * CHUNK_SIZE +
|
| 681 |
+
offs_m[None, :]
|
| 682 |
+
) < seqlen,
|
| 683 |
+
0,
|
| 684 |
+
float("-inf")
|
| 685 |
+
)
|
| 686 |
+
|
| 687 |
+
if MASK_TYPE == 1:
|
| 688 |
+
phi_c_w = tl.where(mask, float("-inf"), phi_c_w)
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
m_phi_c_w = tl.max(phi_c_w, axis=-1)
|
| 692 |
+
masked_out_rows_phi = (m_phi_c_w == float("-inf"))
|
| 693 |
+
m_phi_c_w_masked = tl.where(masked_out_rows_phi, 0, m_phi_c_w)
|
| 694 |
+
phi_c_w = tl.exp2(phi_c_w - m_phi_c_w_masked[:, None])
|
| 695 |
+
denom_phi = tl.sum(phi_c_w, axis=-1)
|
| 696 |
+
denom_phi = tl.where(denom_phi == 0.0, 1.0, denom_phi)
|
| 697 |
+
phi_tilde_c_w = phi_c_w / denom_phi[:, None]
|
| 698 |
+
# phi_c_w = tl.exp2(phi_c_w - tl.max(phi_c_w, axis=-1)[:, None])
|
| 699 |
+
# phi_tilde_c_w = phi_c_w / tl.sum(phi_c_w, axis=-1)[:, None]
|
| 700 |
+
phi_tilde_c_w = phi_tilde_c_w.to(k.dtype)
|
| 701 |
+
d_phi_tilde_c_w = tl.sum(d_rfa_v[:, None, :] * v, axis=-1)
|
| 702 |
+
d_out_rfa_v_t_rfa_v = tl.sum(d_rfa_v * rfa_v, axis=-1)[:, None]
|
| 703 |
+
d_phi_c_w = (d_phi_tilde_c_w.to(tl.float32) - d_out_rfa_v_t_rfa_v.to(tl.float32)) * phi_tilde_c_w
|
| 704 |
+
|
| 705 |
+
d_param_phi = tl.sum(tl.sum(d_phi_c_w[:, :, None] * k * softmax_scale, axis=0), axis=0)
|
| 706 |
+
d_v = phi_tilde_c_w[:, :, None] * d_rfa_v[:, None, :]
|
| 707 |
+
# [c, w, d] + [c, w] * [1, 1, d] - [c, w, d]
|
| 708 |
+
d_k = d_k + softmax_scale * d_phi_c_w[:, :, None] * (param_phi - k)
|
| 709 |
+
|
| 710 |
+
d_k_ptrs = (
|
| 711 |
+
D_K +
|
| 712 |
+
offs_b * stride_d_k_b +
|
| 713 |
+
offs_h * stride_d_k_h +
|
| 714 |
+
(
|
| 715 |
+
(
|
| 716 |
+
start_n * BLOCK_N +
|
| 717 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
| 718 |
+
offs_m[None, :, None]
|
| 719 |
+
) * stride_d_k_n +
|
| 720 |
+
offs_d[None, None, :]
|
| 721 |
+
)
|
| 722 |
+
)
|
| 723 |
+
d_v_ptrs = (
|
| 724 |
+
D_V +
|
| 725 |
+
offs_b * stride_d_v_b +
|
| 726 |
+
offs_h * stride_d_v_h +
|
| 727 |
+
(
|
| 728 |
+
(
|
| 729 |
+
start_n * BLOCK_N +
|
| 730 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
| 731 |
+
offs_m[None, :, None]
|
| 732 |
+
) * stride_d_v_n +
|
| 733 |
+
offs_d[None, None, :]
|
| 734 |
+
)
|
| 735 |
+
)
|
| 736 |
+
if EVEN_N:
|
| 737 |
+
if EVEN_HEADDIM:
|
| 738 |
+
tl.store(
|
| 739 |
+
d_k_ptrs, d_k
|
| 740 |
+
)
|
| 741 |
+
tl.store(
|
| 742 |
+
d_v_ptrs, d_v
|
| 743 |
+
)
|
| 744 |
+
else:
|
| 745 |
+
tl.store(
|
| 746 |
+
d_k_ptrs, d_k,
|
| 747 |
+
mask=offs_d[None, None, :] < headdim
|
| 748 |
+
)
|
| 749 |
+
tl.store(
|
| 750 |
+
d_v_ptrs, d_v,
|
| 751 |
+
mask=offs_d[None, None, :] < headdim
|
| 752 |
+
)
|
| 753 |
+
else:
|
| 754 |
+
if EVEN_HEADDIM:
|
| 755 |
+
tl.store(
|
| 756 |
+
d_k_ptrs, d_k,
|
| 757 |
+
mask=(
|
| 758 |
+
(
|
| 759 |
+
start_n * BLOCK_N +
|
| 760 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
| 761 |
+
offs_m[None, :, None]
|
| 762 |
+
) < seqlen
|
| 763 |
+
),
|
| 764 |
+
)
|
| 765 |
+
tl.store(
|
| 766 |
+
d_v_ptrs, d_v,
|
| 767 |
+
mask=(
|
| 768 |
+
(
|
| 769 |
+
start_n * BLOCK_N +
|
| 770 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
| 771 |
+
offs_m[None, :, None]
|
| 772 |
+
) < seqlen
|
| 773 |
+
),
|
| 774 |
+
)
|
| 775 |
+
else:
|
| 776 |
+
tl.store(
|
| 777 |
+
d_k_ptrs, d_k,
|
| 778 |
+
mask=(
|
| 779 |
+
(
|
| 780 |
+
start_n * BLOCK_N +
|
| 781 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
| 782 |
+
offs_m[None, :, None]
|
| 783 |
+
) < seqlen
|
| 784 |
+
) & (offs_d[None, None, :] < headdim),
|
| 785 |
+
)
|
| 786 |
+
tl.store(
|
| 787 |
+
d_v_ptrs, d_v,
|
| 788 |
+
mask=(
|
| 789 |
+
(
|
| 790 |
+
start_n * BLOCK_N +
|
| 791 |
+
offs_c[:, None, None] * CHUNK_SIZE +
|
| 792 |
+
offs_m[None, :, None]
|
| 793 |
+
) < seqlen
|
| 794 |
+
) & (offs_d[None, None, :] < headdim),
|
| 795 |
+
)
|
| 796 |
+
d_param_phi_partial_ptrs = (
|
| 797 |
+
D_PARAM_PHI_PARTIAL +
|
| 798 |
+
offs_b * stride_d_phi_b +
|
| 799 |
+
offs_h * stride_d_phi_h +
|
| 800 |
+
start_n * stride_d_phi_g +
|
| 801 |
+
offs_d
|
| 802 |
+
)
|
| 803 |
+
if EVEN_HEADDIM:
|
| 804 |
+
tl.store(
|
| 805 |
+
d_param_phi_partial_ptrs, d_param_phi
|
| 806 |
+
)
|
| 807 |
+
else:
|
| 808 |
+
tl.store(
|
| 809 |
+
d_param_phi_partial_ptrs, d_param_phi,
|
| 810 |
+
mask=offs_d < headdim
|
| 811 |
+
)
|
| 812 |
+
|
| 813 |
+
def triton_eva_prep_kv_fwd(k, v, param_mu, param_phi, mask, softmax_scale, chunksize):
|
| 814 |
k, v, param_mu, param_phi = [
|
| 815 |
x if x.stride(-1) == 1 else x.contiguous()
|
| 816 |
for x in [k, v, param_mu, param_phi]
|
|
|
|
| 831 |
softmax_scale = softmax_scale or 1.0 / math.sqrt(head_dim)
|
| 832 |
|
| 833 |
mask_type = 0
|
| 834 |
+
if mask is not None:
|
| 835 |
mask_type = 1
|
| 836 |
+
assert mask.dtype == torch.bool
|
| 837 |
+
assert mask.is_cuda
|
| 838 |
+
assert mask.dim() == 4
|
| 839 |
+
assert mask.shape == (batch, 1, seqlen, 1)
|
| 840 |
+
if mask.stride(-1) != 1:
|
| 841 |
+
mask = mask.contiguous()
|
| 842 |
mask_strides = (
|
| 843 |
+
(mask.stride(0), mask.stride(2))
|
| 844 |
if mask_type == 1 else
|
| 845 |
(0, 0)
|
| 846 |
)
|
|
|
|
| 860 |
v,
|
| 861 |
param_mu,
|
| 862 |
param_phi,
|
| 863 |
+
mask,
|
| 864 |
out_rfa_k,
|
| 865 |
out_rfa_v,
|
| 866 |
softmax_scale,
|
|
|
|
| 875 |
seqlen,
|
| 876 |
nchunks,
|
| 877 |
head_dim,
|
|
|
|
|
|
|
| 878 |
chunks_per_block,
|
| 879 |
chunksize,
|
| 880 |
mask_type,
|
|
|
|
| 884 |
num_stages=1,
|
| 885 |
)
|
| 886 |
return out_rfa_k, out_rfa_v
|
| 887 |
+
|
| 888 |
+
def triton_eva_prep_kv_bwd(
|
| 889 |
+
d_rfa_k, d_rfa_v,
|
| 890 |
+
k, v, param_mu, param_phi,
|
| 891 |
+
mask,
|
| 892 |
+
rfa_k, rfa_v,
|
| 893 |
+
d_k, d_v, d_param_mu, d_param_phi,
|
| 894 |
+
softmax_scale,
|
| 895 |
+
mask_type,
|
| 896 |
+
chunksize
|
| 897 |
+
):
|
| 898 |
+
d_rfa_k, d_rfa_v = [
|
| 899 |
+
x if x.stride(-1) == 1 else x.contiguous()
|
| 900 |
+
for x in [d_rfa_k, d_rfa_v]
|
| 901 |
+
]
|
| 902 |
+
|
| 903 |
+
# shape constraints
|
| 904 |
+
batch, nheads, seqlen, head_dim = k.shape
|
| 905 |
+
assert seqlen % chunksize == 0, "seqlen must be divisible by chunksize"
|
| 906 |
+
nchunks = seqlen // chunksize
|
| 907 |
+
softmax_scale = softmax_scale or 1.0 / math.sqrt(head_dim)
|
| 908 |
+
|
| 909 |
+
mask_strides = (
|
| 910 |
+
(mask.stride(0), mask.stride(2))
|
| 911 |
+
if mask_type == 1 else
|
| 912 |
+
(0, 0)
|
| 913 |
+
)
|
| 914 |
+
|
| 915 |
+
BLOCK_HEADDIM = max(triton.next_power_of_2(head_dim), 16)
|
| 916 |
+
BLOCK = 128
|
| 917 |
+
num_warps = 4 if head_dim <= 64 else 8
|
| 918 |
+
|
| 919 |
+
assert (BLOCK > chunksize) & (BLOCK % chunksize) == 0, "BLOCK must be divisible by chunksize"
|
| 920 |
+
chunks_per_block = BLOCK // chunksize
|
| 921 |
+
|
| 922 |
+
partial_groups = triton.cdiv(seqlen, BLOCK)
|
| 923 |
+
d_param_mu_partial = torch.zeros((batch, nheads, partial_groups, head_dim), dtype=torch.float32, device=d_rfa_k.device)
|
| 924 |
+
d_param_phi_partial = torch.zeros((batch, nheads, partial_groups, head_dim), dtype=torch.float32, device=d_rfa_k.device)
|
| 925 |
+
grid = lambda META: (partial_groups, batch * nheads)
|
| 926 |
+
_bwd_eva_prep_kv_kernel[grid](
|
| 927 |
+
rfa_k, # [b, h, c, d]
|
| 928 |
+
rfa_v, # [b, h, c, d]
|
| 929 |
+
k, # [b, h, n, d]
|
| 930 |
+
v, # [b, h, n, d]
|
| 931 |
+
param_mu, # [1, h, 1, 1, d]
|
| 932 |
+
param_phi, # [1, h, 1, 1, d]
|
| 933 |
+
mask, # [b, h, n, 1]
|
| 934 |
+
d_rfa_k, # [b, h, c, d]
|
| 935 |
+
d_rfa_v, # [b, h, c, d]
|
| 936 |
+
d_k, # [b, h, n, d]
|
| 937 |
+
d_v, # [b, h, n, d]
|
| 938 |
+
d_param_mu_partial, # [b, h, g, d]
|
| 939 |
+
d_param_phi_partial, # [b, h, g, d]
|
| 940 |
+
softmax_scale,
|
| 941 |
+
rfa_k.stride(0), rfa_k.stride(1), rfa_k.stride(2),
|
| 942 |
+
rfa_v.stride(0), rfa_v.stride(1), rfa_v.stride(2),
|
| 943 |
+
k.stride(0), k.stride(1), k.stride(2),
|
| 944 |
+
v.stride(0), v.stride(1), v.stride(2),
|
| 945 |
+
param_mu.stride(1),
|
| 946 |
+
param_phi.stride(1),
|
| 947 |
+
mask_strides[0], mask_strides[1],
|
| 948 |
+
d_rfa_k.stride(0), d_rfa_k.stride(1), d_rfa_k.stride(2),
|
| 949 |
+
d_rfa_v.stride(0), d_rfa_v.stride(1), d_rfa_v.stride(2),
|
| 950 |
+
d_k.stride(0), d_k.stride(1), d_k.stride(2),
|
| 951 |
+
d_v.stride(0), d_v.stride(1), d_v.stride(2),
|
| 952 |
+
d_param_mu_partial.stride(0), d_param_mu_partial.stride(1), d_param_mu_partial.stride(2),
|
| 953 |
+
d_param_phi_partial.stride(0), d_param_phi_partial.stride(1), d_param_phi_partial.stride(2),
|
| 954 |
+
nheads,
|
| 955 |
+
seqlen,
|
| 956 |
+
nchunks,
|
| 957 |
+
head_dim,
|
| 958 |
+
chunks_per_block,
|
| 959 |
+
chunksize,
|
| 960 |
+
mask_type,
|
| 961 |
+
BLOCK_HEADDIM,
|
| 962 |
+
BLOCK_N=BLOCK,
|
| 963 |
+
num_warps=num_warps,
|
| 964 |
+
num_stages=1,
|
| 965 |
+
)
|
| 966 |
+
d_param_mu.copy_(d_param_mu_partial.sum(dim=(0, -2), keepdim=True).unsqueeze(-2).to(d_param_mu.dtype))
|
| 967 |
+
d_param_phi.copy_(d_param_phi_partial.sum(dim=(0, -2), keepdim=True).unsqueeze(-2).to(d_param_phi.dtype))
|
| 968 |
+
|
| 969 |
+
|
| 970 |
+
|
| 971 |
+
class EvaPrepKVFunc(torch.autograd.Function):
|
| 972 |
+
@staticmethod
|
| 973 |
+
def forward(ctx, k, v, param_mu, param_phi, mask, softmax_scale=None, chunksize=None):
|
| 974 |
+
if mask is not None:
|
| 975 |
+
mask_type = 1
|
| 976 |
+
else:
|
| 977 |
+
mask_type = 0
|
| 978 |
+
rfa_k, rfa_v = triton_eva_prep_kv_fwd(
|
| 979 |
+
k, v, param_mu, param_phi, mask, softmax_scale, chunksize
|
| 980 |
+
)
|
| 981 |
+
ctx.save_for_backward(k, v, param_mu, param_phi, mask, rfa_k, rfa_v)
|
| 982 |
+
ctx.softmax_scale = softmax_scale
|
| 983 |
+
ctx.chunksize = chunksize
|
| 984 |
+
ctx.mask_type = mask_type
|
| 985 |
+
return rfa_k, rfa_v
|
| 986 |
+
|
| 987 |
+
@staticmethod
|
| 988 |
+
def backward(ctx, d_rfa_k, d_rfa_v):
|
| 989 |
+
k, v, param_mu, param_phi, mask, rfa_k, rfa_v = ctx.saved_tensors
|
| 990 |
+
d_k = torch.empty_like(k)
|
| 991 |
+
d_v = torch.empty_like(v)
|
| 992 |
+
d_param_mu = torch.empty_like(param_mu)
|
| 993 |
+
d_param_phi = torch.empty_like(param_phi)
|
| 994 |
+
triton_eva_prep_kv_bwd(
|
| 995 |
+
d_rfa_k, d_rfa_v,
|
| 996 |
+
k, v, param_mu, param_phi,
|
| 997 |
+
mask,
|
| 998 |
+
rfa_k, rfa_v,
|
| 999 |
+
d_k, d_v, d_param_mu, d_param_phi,
|
| 1000 |
+
ctx.softmax_scale,
|
| 1001 |
+
ctx.mask_type,
|
| 1002 |
+
ctx.chunksize
|
| 1003 |
+
)
|
| 1004 |
+
return d_k, d_v, d_param_mu, d_param_phi, None, None, None
|
| 1005 |
+
|
| 1006 |
+
def eva_prep_kv_func_triton(
|
| 1007 |
+
k, v,
|
| 1008 |
+
param_mu, param_phi,
|
| 1009 |
+
mask,
|
| 1010 |
+
softmax_scale=None, chunksize=None
|
| 1011 |
+
):
|
| 1012 |
+
return EvaPrepKVFunc.apply(
|
| 1013 |
+
k, v,
|
| 1014 |
+
param_mu, param_phi,
|
| 1015 |
+
mask,
|
| 1016 |
+
softmax_scale, chunksize
|
| 1017 |
+
)
|
eva_pt_ref.py
CHANGED
|
@@ -263,7 +263,6 @@ class EvaAttention(nn.Module):
|
|
| 263 |
v,
|
| 264 |
self.layer_idx,
|
| 265 |
self.window_size,
|
| 266 |
-
self.singleton_update
|
| 267 |
)
|
| 268 |
else:
|
| 269 |
prev_w_q = self.window_partition(q) # [b, h, w, i, d]
|
|
@@ -289,10 +288,9 @@ class EvaAttention(nn.Module):
|
|
| 289 |
layer_idx=self.layer_idx,
|
| 290 |
window_size=self.window_size,
|
| 291 |
chunk_size=self.chunk_size,
|
| 292 |
-
singleton_update=self.singleton_update
|
| 293 |
)
|
| 294 |
else:
|
| 295 |
-
prev_s_mask =
|
| 296 |
cur_s_mask = None
|
| 297 |
prev_chunk_mask = self.window_partition(chunk_causal_mask)
|
| 298 |
cur_chunk_mask = None
|
|
|
|
| 263 |
v,
|
| 264 |
self.layer_idx,
|
| 265 |
self.window_size,
|
|
|
|
| 266 |
)
|
| 267 |
else:
|
| 268 |
prev_w_q = self.window_partition(q) # [b, h, w, i, d]
|
|
|
|
| 288 |
layer_idx=self.layer_idx,
|
| 289 |
window_size=self.window_size,
|
| 290 |
chunk_size=self.chunk_size,
|
|
|
|
| 291 |
)
|
| 292 |
else:
|
| 293 |
+
prev_s_mask = self.window_partition(prev_causal_mask) # [1, 1, w, i, j]
|
| 294 |
cur_s_mask = None
|
| 295 |
prev_chunk_mask = self.window_partition(chunk_causal_mask)
|
| 296 |
cur_chunk_mask = None
|
modeling_evabyte.py
CHANGED
|
@@ -148,7 +148,7 @@ class EvaByteRMSNorm(nn.Module):
|
|
| 148 |
def __init__(self, config):
|
| 149 |
super().__init__()
|
| 150 |
self.config = config
|
| 151 |
-
self.fp32_ln =
|
| 152 |
self.variance_epsilon = config.rms_norm_eps
|
| 153 |
self.add_unit_offset = config.norm_add_unit_offset
|
| 154 |
if self.add_unit_offset:
|
|
@@ -157,18 +157,14 @@ class EvaByteRMSNorm(nn.Module):
|
|
| 157 |
self.weight = nn.Parameter(torch.ones(config.hidden_size))
|
| 158 |
|
| 159 |
def forward(self, hidden_states):
|
| 160 |
-
if
|
| 161 |
-
fp32_ln = self.config.fp32_ln
|
| 162 |
-
else:
|
| 163 |
-
fp32_ln = self.fp32_ln
|
| 164 |
-
hidden_states = hidden_states.to(torch.float32 if fp32_ln else torch.bfloat16)
|
| 165 |
|
| 166 |
-
variance =
|
| 167 |
-
|
| 168 |
if self.add_unit_offset:
|
| 169 |
-
return (1 + self.weight) * hidden_states
|
| 170 |
else:
|
| 171 |
-
return self.weight * hidden_states
|
| 172 |
|
| 173 |
class EvaByteRotaryEmbedding(torch.nn.Module):
|
| 174 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
|
@@ -313,7 +309,7 @@ class EvaByteDecoderLayer(nn.Module):
|
|
| 313 |
cos=cos,
|
| 314 |
sin=sin,
|
| 315 |
multibyte_decoding=multibyte_decoding)
|
| 316 |
-
hidden_states = residual + hidden_states
|
| 317 |
|
| 318 |
# Fully Connected
|
| 319 |
residual = hidden_states
|
|
@@ -321,7 +317,7 @@ class EvaByteDecoderLayer(nn.Module):
|
|
| 321 |
residual = residual.float()
|
| 322 |
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 323 |
hidden_states = self.mlp(hidden_states)
|
| 324 |
-
hidden_states = residual + hidden_states
|
| 325 |
|
| 326 |
outputs = (hidden_states, )
|
| 327 |
|
|
@@ -653,7 +649,7 @@ class EvaByteModel(EvaBytePreTrainedModel):
|
|
| 653 |
)
|
| 654 |
else:
|
| 655 |
assert self.training
|
| 656 |
-
assert seq_len % self.config.window_size == 0
|
| 657 |
# for training, we need to pass in the attention mask
|
| 658 |
# usually calculated by _prepare_training_attn_mask()
|
| 659 |
causal_mask = attention_mask
|
|
@@ -683,31 +679,6 @@ class EvaByteModel(EvaBytePreTrainedModel):
|
|
| 683 |
cos = cos.unsqueeze(1)
|
| 684 |
sin = sin.unsqueeze(1)
|
| 685 |
|
| 686 |
-
if USE_TRITON_IMPL and (not multibyte_decoding):
|
| 687 |
-
# the masks generated above for triton kernels are boolean. Convert them to floats
|
| 688 |
-
if (
|
| 689 |
-
(not use_cache) or
|
| 690 |
-
(use_cache and past_seen_tokens == 0)
|
| 691 |
-
):
|
| 692 |
-
window_mask, intra_chunk_mask = causal_mask
|
| 693 |
-
|
| 694 |
-
if window_mask is not None:
|
| 695 |
-
assert window_mask.dtype == torch.bool
|
| 696 |
-
window_mask_float = window_mask.to(torch.float)
|
| 697 |
-
window_mask_float = window_mask_float.masked_fill(window_mask.to(torch.bool), MASK_MIN_VALUE)
|
| 698 |
-
window_mask_float = window_mask_float.reshape(batch_size, 1, -1, self.config.window_size)
|
| 699 |
-
window_mask = window_mask_float.to(hidden_states.dtype)
|
| 700 |
-
|
| 701 |
-
if intra_chunk_mask is not None:
|
| 702 |
-
assert intra_chunk_mask.dtype == torch.bool
|
| 703 |
-
intra_chunk_mask_float = intra_chunk_mask.to(torch.float)
|
| 704 |
-
intra_chunk_mask_float = intra_chunk_mask_float.masked_fill(intra_chunk_mask.to(torch.bool), MASK_MIN_VALUE)
|
| 705 |
-
intra_chunk_mask = intra_chunk_mask_float.to(hidden_states.dtype)
|
| 706 |
-
causal_mask = (window_mask, intra_chunk_mask)
|
| 707 |
-
|
| 708 |
-
if self.config.fp32_skip_add:
|
| 709 |
-
hidden_states = hidden_states.float()
|
| 710 |
-
|
| 711 |
# decoder layers
|
| 712 |
all_hidden_states = () if output_hidden_states else None
|
| 713 |
all_self_attns = () if output_attentions else None
|
|
@@ -718,20 +689,17 @@ class EvaByteModel(EvaBytePreTrainedModel):
|
|
| 718 |
all_hidden_states += (hidden_states, )
|
| 719 |
|
| 720 |
if self.gradient_checkpointing and self.training:
|
| 721 |
-
|
| 722 |
-
def create_custom_forward(module):
|
| 723 |
-
def custom_forward(*inputs):
|
| 724 |
-
# None for past_key_value
|
| 725 |
-
return module(*inputs, output_attentions, use_cache=None)
|
| 726 |
-
|
| 727 |
-
return custom_forward
|
| 728 |
-
|
| 729 |
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 730 |
-
|
| 731 |
hidden_states,
|
| 732 |
causal_mask,
|
| 733 |
position_ids,
|
| 734 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 735 |
)
|
| 736 |
else:
|
| 737 |
layer_outputs = decoder_layer(
|
|
@@ -806,154 +774,6 @@ class EvaByteForCausalLM(EvaBytePreTrainedModel, MultiByteDecodingMixin):
|
|
| 806 |
def get_decoder(self):
|
| 807 |
return self.model
|
| 808 |
|
| 809 |
-
def _prepare_training_attn_mask(
|
| 810 |
-
self,
|
| 811 |
-
target_token_type_ids,
|
| 812 |
-
use_doc_boundary_attention,
|
| 813 |
-
EOS_TOKEN_TYPE_ID=None,
|
| 814 |
-
PAD_TOKEN_TYPE_ID=None,
|
| 815 |
-
):
|
| 816 |
-
'''
|
| 817 |
-
This function prepares the attention mask for training byte models.
|
| 818 |
-
target_token_type_ids:
|
| 819 |
-
Tensor of shape (batch_size, seq_len), marking the token type ids
|
| 820 |
-
for the target sequence. In particular, we should have
|
| 821 |
-
- target_token_type_ids[i, j] = EOS_TOKEN_TYPE_ID
|
| 822 |
-
if the j-th token in the i-th sequence is the end of an article.
|
| 823 |
-
- target_token_type_ids[i, j] = PAD_TOKEN_TYPE_ID
|
| 824 |
-
if the j-th token in the i-th sequence is the padding token.
|
| 825 |
-
use_doc_boundary_attention: bool,
|
| 826 |
-
whether to enable doc boundary attention.
|
| 827 |
-
EOS_TOKEN_TYPE_ID: int,
|
| 828 |
-
the token type id for the end of an article.
|
| 829 |
-
PAD_TOKEN_TYPE_ID: int,
|
| 830 |
-
the token type id for the padding token.
|
| 831 |
-
'''
|
| 832 |
-
assert self.training
|
| 833 |
-
batch_size, num_tokens = target_token_type_ids.shape
|
| 834 |
-
|
| 835 |
-
chunk_causal_mask, window_causal_mask = prepare_eva_attention_mask(
|
| 836 |
-
num_tokens,
|
| 837 |
-
target_token_type_ids.device,
|
| 838 |
-
chunk_size=self.config.chunk_size,
|
| 839 |
-
window_size=self.config.window_size,
|
| 840 |
-
use_cache=False,
|
| 841 |
-
cache=None
|
| 842 |
-
)
|
| 843 |
-
if use_doc_boundary_attention:
|
| 844 |
-
#### step 1: mark each document with a unique id
|
| 845 |
-
end_token_ids = {EOS_TOKEN_TYPE_ID, PAD_TOKEN_TYPE_ID}
|
| 846 |
-
token_types = torch.zeros(batch_size, num_tokens)
|
| 847 |
-
for sequence_idx, sequence in enumerate(target_token_type_ids):
|
| 848 |
-
num_articles = 0
|
| 849 |
-
start_index = 0
|
| 850 |
-
# for each sample in the batch, the collapsed attention mask looks like:
|
| 851 |
-
# [1, 1, .... 1, 0, 2, 2, ... 2, 0, ... n, n ..... n], assuming there are n articles in the sequence.
|
| 852 |
-
# Each of the n articles are separated by 0.
|
| 853 |
-
for token_idx, token_type_id in enumerate(sequence):
|
| 854 |
-
if start_index is not None and token_type_id.item() in end_token_ids:
|
| 855 |
-
num_articles += 1
|
| 856 |
-
end_index = token_idx if token_type_id == PAD_TOKEN_TYPE_ID else token_idx + 1
|
| 857 |
-
token_types[sequence_idx][start_index:end_index] = num_articles
|
| 858 |
-
start_index = None
|
| 859 |
-
elif start_index is None and token_type_id not in end_token_ids:
|
| 860 |
-
start_index = token_idx + 1
|
| 861 |
-
|
| 862 |
-
assert num_tokens % self.config.chunk_size == 0, "Number of tokens must be divisible by chunk size"
|
| 863 |
-
assert num_tokens % self.config.window_size == 0, "Number of tokens must be divisible by window size"
|
| 864 |
-
num_chunks = num_tokens // self.config.chunk_size
|
| 865 |
-
num_windows = num_tokens // self.config.window_size
|
| 866 |
-
|
| 867 |
-
article_separator = 0
|
| 868 |
-
|
| 869 |
-
#### step 2: generate attention masks for each window
|
| 870 |
-
#### NOTE: we perform exact attention within each window,
|
| 871 |
-
#### so we only need to mask out different documents
|
| 872 |
-
#### for each window.
|
| 873 |
-
token_types_windows = token_types.reshape(batch_size, num_windows, self.config.window_size, 1)
|
| 874 |
-
token_types_windows_t = token_types_windows.transpose(-1, -2)
|
| 875 |
-
# replace all elements in TOKEN_SEPS with -1
|
| 876 |
-
token_types_windows = torch.where(token_types_windows == article_separator, -1, token_types_windows)
|
| 877 |
-
window_3d_mask = (token_types_windows == token_types_windows_t)
|
| 878 |
-
window_3d_mask = ~window_3d_mask
|
| 879 |
-
|
| 880 |
-
#### step 3: generate chunk-level 3D masks
|
| 881 |
-
#### NOTE: this is a bit tricky, as we aim to mask out different
|
| 882 |
-
#### documents to avoid cross-doc attention across chunks.
|
| 883 |
-
#### Example: suppose we have a sequence of length 12 with 3 documents:
|
| 884 |
-
#### [1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3].
|
| 885 |
-
#### The chunk-size and window-size are both 4.
|
| 886 |
-
#### The chunk-level mask of shape (batch_size, seq_len, num_chunks) is:
|
| 887 |
-
#### [
|
| 888 |
-
#### [0, 0, 0],
|
| 889 |
-
#### [0, 0, 0],
|
| 890 |
-
#### [0, 0, 0],
|
| 891 |
-
#### [0, 0, 0],
|
| 892 |
-
####
|
| 893 |
-
#### [1, 0, 0],
|
| 894 |
-
#### [0, 0, 0],
|
| 895 |
-
#### [0, 0, 0],
|
| 896 |
-
#### [0, 0, 0],
|
| 897 |
-
####
|
| 898 |
-
#### [0, 1, 0],
|
| 899 |
-
#### [0, 1, 0],
|
| 900 |
-
#### [0, 1, 0],
|
| 901 |
-
#### [0, 1, 0],
|
| 902 |
-
#### ]
|
| 903 |
-
#### Explanation:
|
| 904 |
-
#### - Tokens will not attend to their own and future chunks.
|
| 905 |
-
#### (as tokens within a chunk are captured by the window-level exact attention)
|
| 906 |
-
#### - Tokens will attend to a chunk only if there are tokens
|
| 907 |
-
#### from the same document in that chunk.
|
| 908 |
-
#### The mask within each chunk of shape (batch_size, num_chunks, chunk_size) is:
|
| 909 |
-
#### [
|
| 910 |
-
#### [1, 1, 1, 1],
|
| 911 |
-
#### [0, 0, 0, 1],
|
| 912 |
-
#### [1, 1, 1, 1],
|
| 913 |
-
#### ]
|
| 914 |
-
#### Explanation:
|
| 915 |
-
#### - If all tokens in a chunk are from the same document,
|
| 916 |
-
#### no tokens will be masked out.
|
| 917 |
-
#### - If there are tokens from different documents in a chunk,
|
| 918 |
-
#### only tokens from the rightmost document will be kept.
|
| 919 |
-
#### (b/c the future chunks might contain tokens from the rightmost document,
|
| 920 |
-
#### but all the remaining docs will never get attended by other docs)
|
| 921 |
-
token_types_chunks = token_types.reshape(batch_size, num_chunks, self.config.chunk_size)
|
| 922 |
-
inter_chunk_mask = torch.zeros((batch_size, num_tokens, num_chunks), dtype=torch.bool)
|
| 923 |
-
intra_chunk_mask = torch.ones_like(token_types_chunks, dtype=torch.bool)
|
| 924 |
-
|
| 925 |
-
for chunk_idx in range(num_chunks):
|
| 926 |
-
for batch_idx in range(batch_size):
|
| 927 |
-
# Identify tokens in the current chunk belonging to each sequence
|
| 928 |
-
chunk = token_types_chunks[batch_idx, chunk_idx]
|
| 929 |
-
unique_elements = torch.unique(chunk, sorted=True).tolist()
|
| 930 |
-
|
| 931 |
-
# Create a mask for whether each token can attend to the current chunk
|
| 932 |
-
for token_type in unique_elements:
|
| 933 |
-
if token_type == article_separator:
|
| 934 |
-
continue
|
| 935 |
-
token_mask = (token_types[batch_idx] == token_type)
|
| 936 |
-
inter_chunk_mask[batch_idx, :, chunk_idx] |= token_mask
|
| 937 |
-
|
| 938 |
-
# Create a mask within each chunk
|
| 939 |
-
unique_elements = [x for x in unique_elements if x != article_separator]
|
| 940 |
-
if len(unique_elements) > 1 and chunk[-1] != article_separator:
|
| 941 |
-
intra_chunk_mask[batch_idx, chunk_idx] = (chunk == unique_elements[-1])
|
| 942 |
-
|
| 943 |
-
inter_chunk_mask = ~inter_chunk_mask
|
| 944 |
-
intra_chunk_mask = ~intra_chunk_mask
|
| 945 |
-
|
| 946 |
-
window_mask = torch.logical_or(window_causal_mask, window_3d_mask.unsqueeze(1))
|
| 947 |
-
inter_chunk_mask = torch.logical_or(chunk_causal_mask, inter_chunk_mask.unsqueeze(1))
|
| 948 |
-
intra_chunk_mask = intra_chunk_mask.unsqueeze(1).unsqueeze(-1)
|
| 949 |
-
|
| 950 |
-
joint_mask = torch.cat([window_mask, inter_chunk_mask.reshape(*window_mask.shape)], dim=-1)
|
| 951 |
-
attention_mask = (joint_mask, intra_chunk_mask)
|
| 952 |
-
else:
|
| 953 |
-
joint_mask = torch.cat([window_causal_mask, chunk_causal_mask.reshape(*window_causal_mask.shape)], dim=-1)
|
| 954 |
-
attention_mask = (joint_mask, None)
|
| 955 |
-
return attention_mask
|
| 956 |
-
|
| 957 |
def forward(
|
| 958 |
self,
|
| 959 |
input_ids: torch.LongTensor = None,
|
|
|
|
| 148 |
def __init__(self, config):
|
| 149 |
super().__init__()
|
| 150 |
self.config = config
|
| 151 |
+
self.fp32_ln = True
|
| 152 |
self.variance_epsilon = config.rms_norm_eps
|
| 153 |
self.add_unit_offset = config.norm_add_unit_offset
|
| 154 |
if self.add_unit_offset:
|
|
|
|
| 157 |
self.weight = nn.Parameter(torch.ones(config.hidden_size))
|
| 158 |
|
| 159 |
def forward(self, hidden_states):
|
| 160 |
+
_hidden_states = hidden_states.to(torch.float32 if self.fp32_ln else torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
+
variance = _hidden_states.pow(2).mean(-1, keepdim=True)
|
| 163 |
+
_hidden_states = _hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 164 |
if self.add_unit_offset:
|
| 165 |
+
return ((1 + self.weight) * _hidden_states).type_as(hidden_states)
|
| 166 |
else:
|
| 167 |
+
return (self.weight * _hidden_states).type_as(hidden_states)
|
| 168 |
|
| 169 |
class EvaByteRotaryEmbedding(torch.nn.Module):
|
| 170 |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
|
|
|
| 309 |
cos=cos,
|
| 310 |
sin=sin,
|
| 311 |
multibyte_decoding=multibyte_decoding)
|
| 312 |
+
hidden_states = (residual + hidden_states).to(hidden_states.dtype)
|
| 313 |
|
| 314 |
# Fully Connected
|
| 315 |
residual = hidden_states
|
|
|
|
| 317 |
residual = residual.float()
|
| 318 |
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 319 |
hidden_states = self.mlp(hidden_states)
|
| 320 |
+
hidden_states = (residual + hidden_states).to(hidden_states.dtype)
|
| 321 |
|
| 322 |
outputs = (hidden_states, )
|
| 323 |
|
|
|
|
| 649 |
)
|
| 650 |
else:
|
| 651 |
assert self.training
|
| 652 |
+
assert seq_len % self.config.window_size == 0, "Training is only tested for sequences that are a multiple of window_size"
|
| 653 |
# for training, we need to pass in the attention mask
|
| 654 |
# usually calculated by _prepare_training_attn_mask()
|
| 655 |
causal_mask = attention_mask
|
|
|
|
| 679 |
cos = cos.unsqueeze(1)
|
| 680 |
sin = sin.unsqueeze(1)
|
| 681 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 682 |
# decoder layers
|
| 683 |
all_hidden_states = () if output_hidden_states else None
|
| 684 |
all_self_attns = () if output_attentions else None
|
|
|
|
| 689 |
all_hidden_states += (hidden_states, )
|
| 690 |
|
| 691 |
if self.gradient_checkpointing and self.training:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 692 |
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 693 |
+
decoder_layer.__call__,
|
| 694 |
hidden_states,
|
| 695 |
causal_mask,
|
| 696 |
position_ids,
|
| 697 |
+
past_key_values,
|
| 698 |
+
output_attentions,
|
| 699 |
+
use_cache,
|
| 700 |
+
cos,
|
| 701 |
+
sin,
|
| 702 |
+
multibyte_decoding,
|
| 703 |
)
|
| 704 |
else:
|
| 705 |
layer_outputs = decoder_layer(
|
|
|
|
| 774 |
def get_decoder(self):
|
| 775 |
return self.model
|
| 776 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 777 |
def forward(
|
| 778 |
self,
|
| 779 |
input_ids: torch.LongTensor = None,
|