// xtts_inference.cpp - XTTS GGUF Inference Engine Implementation #include "xtts_inference.h" #include #include #include #include #include #include #include #include #include #include #include namespace xtts { // Constructor XTTSInference::XTTSInference() { // Initialize GGML backend ggml_backend_load_all(); } // Destructor XTTSInference::~XTTSInference() { // Clean up model resources if (model.ctx) { ggml_free(model.ctx); } if (model.backend) { ggml_backend_free(model.backend); } if (model.buffer) { ggml_backend_buffer_free(model.buffer); } if (allocr) { ggml_gallocr_free(allocr); } // Unmap memory if using mmap if (mapped_memory) { munmap(mapped_memory, mapped_size); } } XTTSModel::~XTTSModel() { // Cleanup handled by parent XTTSInference } // Load model from GGUF file bool XTTSInference::load_model(const std::string& model_path, bool use_mmap) { std::cout << "Loading XTTS model from: " << model_path << std::endl; if (!load_gguf_file(model_path, use_mmap)) { return false; } // Create computation graph structure create_computation_graph(); std::cout << "Model loaded successfully" << std::endl; std::cout << " Vocab size: " << hparams.n_vocab << std::endl; std::cout << " Embedding dim: " << hparams.n_embd << std::endl; std::cout << " Layers: " << hparams.n_layer << std::endl; std::cout << " Languages: " << hparams.n_languages << std::endl; return true; } // Load GGUF file bool XTTSInference::load_gguf_file(const std::string& path, bool use_mmap) { // Read GGUF header std::ifstream file(path, std::ios::binary); if (!file) { std::cerr << "Failed to open file: " << path << std::endl; return false; } // Read magic and version uint32_t magic, version; file.read(reinterpret_cast(&magic), sizeof(magic)); file.read(reinterpret_cast(&version), sizeof(version)); if (magic != 0x46554747) { // "GGUF" std::cerr << "Invalid GGUF magic number" << std::endl; return false; } // Read metadata uint64_t metadata_size; file.read(reinterpret_cast(&metadata_size), sizeof(metadata_size)); std::vector metadata_json(metadata_size); file.read(metadata_json.data(), metadata_size); // Parse metadata (simplified - would use proper JSON parser) // For now, use default hyperparameters // Read tensor count uint64_t n_tensors; file.read(reinterpret_cast(&n_tensors), sizeof(n_tensors)); // Initialize GGML context size_t ctx_size = ggml_tensor_overhead() * n_tensors + (1 << 20); // 1MB extra struct ggml_init_params params = { .mem_size = ctx_size, .mem_buffer = nullptr, .no_alloc = true, }; model.ctx = ggml_init(params); if (!model.ctx) { std::cerr << "Failed to initialize GGML context" << std::endl; return false; } // Initialize backend (CPU by default, can use CUDA if available) model.backend = ggml_backend_cpu_init(); if (!model.backend) { std::cerr << "Failed to initialize backend" << std::endl; return false; } // Memory map the file if requested if (use_mmap) { int fd = open(path.c_str(), O_RDONLY); if (fd < 0) { std::cerr << "Failed to open file for mmap" << std::endl; return false; } // Get file size off_t file_size = lseek(fd, 0, SEEK_END); lseek(fd, 0, SEEK_SET); // Memory map the file mapped_memory = mmap(nullptr, file_size, PROT_READ, MAP_PRIVATE, fd, 0); mapped_size = file_size; close(fd); if (mapped_memory == MAP_FAILED) { std::cerr << "Failed to mmap file" << std::endl; mapped_memory = nullptr; return false; } std::cout << "Memory-mapped " << (file_size / (1024*1024)) << " MB" << std::endl; } // Read and create tensors for (size_t i = 0; i < n_tensors; ++i) { // Read tensor name uint32_t name_len; file.read(reinterpret_cast(&name_len), sizeof(name_len)); std::string name(name_len, '\0'); file.read(&name[0], name_len); // Read shape uint32_t n_dims; file.read(reinterpret_cast(&n_dims), sizeof(n_dims)); std::vector shape(n_dims); for (uint32_t j = 0; j < n_dims; ++j) { uint32_t dim; file.read(reinterpret_cast(&dim), sizeof(dim)); shape[j] = dim; } // Read quantization type uint32_t quant_type; file.read(reinterpret_cast(&quant_type), sizeof(quant_type)); // Read data size uint64_t data_size; file.read(reinterpret_cast(&data_size), sizeof(data_size)); // Map GGML type enum ggml_type type = GGML_TYPE_F32; switch (quant_type) { case 0: type = GGML_TYPE_F32; break; case 1: type = GGML_TYPE_F16; break; case 8: type = GGML_TYPE_Q8_0; break; case 12: type = GGML_TYPE_Q4_K; break; default: type = GGML_TYPE_F32; break; } // Create tensor struct ggml_tensor* tensor = nullptr; if (n_dims == 1) { tensor = ggml_new_tensor_1d(model.ctx, type, shape[0]); } else if (n_dims == 2) { tensor = ggml_new_tensor_2d(model.ctx, type, shape[0], shape[1]); } else if (n_dims == 3) { tensor = ggml_new_tensor_3d(model.ctx, type, shape[0], shape[1], shape[2]); } else if (n_dims == 4) { tensor = ggml_new_tensor_4d(model.ctx, type, shape[0], shape[1], shape[2], shape[3]); } if (!tensor) { std::cerr << "Failed to create tensor: " << name << std::endl; file.seekg(data_size, std::ios::cur); // Skip data continue; } // Set tensor name ggml_set_name(tensor, name.c_str()); // Store tensor in model based on name if (name.find("text_embedding") != std::string::npos) { model.text_embedding = tensor; } else if (name.find("language_embedding") != std::string::npos) { model.language_embedding = tensor; } else if (name.find("pos_encoding") != std::string::npos) { model.pos_encoding = tensor; } else if (name.find("audio_token_predictor") != std::string::npos) { model.audio_token_predictor = tensor; } else if (name.find("speaker_projection") != std::string::npos) { model.speaker_projection = tensor; } else if (name.find("vocoder_preconv") != std::string::npos) { model.vocoder_preconv = tensor; } else if (name.find("vocoder_postconv") != std::string::npos) { model.vocoder_postconv = tensor; } // Add more tensor assignments as needed... // Skip data for now (would load into tensor in real implementation) file.seekg(data_size, std::ios::cur); } file.close(); // Allocate backend buffer for tensors size_t buffer_size = ggml_backend_get_default_buffer_size(model.backend); model.buffer = ggml_backend_alloc_buffer(model.backend, buffer_size); return true; } // Create computation graph void XTTSInference::create_computation_graph() { // Initialize graph allocator allocr = ggml_gallocr_new_from_backend(model.backend); // Initialize KV cache kv_cache.k_cache = ggml_new_tensor_3d( model.ctx, GGML_TYPE_F32, hparams.n_embd, hparams.n_ctx_text + hparams.n_ctx_audio, hparams.n_layer ); kv_cache.v_cache = ggml_new_tensor_3d( model.ctx, GGML_TYPE_F32, hparams.n_embd, hparams.n_ctx_text + hparams.n_ctx_audio, hparams.n_layer ); } // Tokenize text (simplified byte-level tokenization) std::vector XTTSInference::tokenize(const std::string& text) { std::vector tokens; tokens.reserve(text.length()); for (char c : text) { // Simple byte-level tokenization tokens.push_back(static_cast(c)); } // Pad or truncate to max length if (tokens.size() > hparams.n_ctx_text) { tokens.resize(hparams.n_ctx_text); } else { while (tokens.size() < hparams.n_ctx_text) { tokens.push_back(0); // Padding token } } return tokens; } // Create speaker embedding std::vector XTTSInference::create_speaker_embedding(int speaker_id) { std::vector embedding(hparams.speaker_emb_dim, 0.0f); // Simple one-hot style encoding for demo if (speaker_id >= 0 && speaker_id < hparams.speaker_emb_dim) { embedding[speaker_id] = 1.0f; } // Add some random variation std::mt19937 gen(speaker_id); std::normal_distribution dist(0.0f, 0.1f); for (float& val : embedding) { val += dist(gen); } return embedding; } // Encode text to features struct ggml_tensor* XTTSInference::encode_text( const std::vector& tokens, Language language, const std::vector& speaker_embedding ) { struct ggml_cgraph* gf = ggml_new_graph(model.ctx); // Create input tensors struct ggml_tensor* token_tensor = ggml_new_tensor_1d( model.ctx, GGML_TYPE_I32, tokens.size() ); memcpy(token_tensor->data, tokens.data(), tokens.size() * sizeof(int32_t)); // Get text embeddings struct ggml_tensor* text_emb = ggml_get_rows( model.ctx, model.text_embedding, token_tensor ); // Add language embedding struct ggml_tensor* lang_tensor = ggml_new_tensor_1d( model.ctx, GGML_TYPE_I32, tokens.size() ); for (size_t i = 0; i < tokens.size(); ++i) { ((int32_t*)lang_tensor->data)[i] = static_cast(language); } struct ggml_tensor* lang_emb = ggml_get_rows( model.ctx, model.language_embedding, lang_tensor ); // Combine embeddings struct ggml_tensor* combined = ggml_add(model.ctx, text_emb, lang_emb); // Add positional encoding if (model.pos_encoding) { struct ggml_tensor* pos = ggml_view_2d( model.ctx, model.pos_encoding, hparams.n_embd, tokens.size(), hparams.n_embd * sizeof(float), 0 ); combined = ggml_add(model.ctx, combined, pos); } // Add speaker embedding if provided if (!speaker_embedding.empty() && model.speaker_projection) { struct ggml_tensor* spk_tensor = ggml_new_tensor_1d( model.ctx, GGML_TYPE_F32, speaker_embedding.size() ); memcpy(spk_tensor->data, speaker_embedding.data(), speaker_embedding.size() * sizeof(float)); struct ggml_tensor* spk_proj = ggml_mul_mat( model.ctx, model.speaker_projection, spk_tensor ); // Broadcast and add to all positions struct ggml_tensor* spk_expanded = ggml_repeat( model.ctx, spk_proj, ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, hparams.n_embd, tokens.size()) ); combined = ggml_add(model.ctx, combined, ggml_scale(model.ctx, spk_expanded, 0.1f)); } // Process through transformer layers struct ggml_tensor* hidden = combined; for (int layer = 0; layer < hparams.n_layer; ++layer) { // Self-attention hidden = attention(hidden, layer, true); // Feed-forward network hidden = ffn(hidden, layer); } // Build and execute graph ggml_build_forward_expand(gf, hidden); ggml_gallocr_alloc_graph(allocr, gf); // Run computation ggml_backend_graph_compute(model.backend, gf); return hidden; } // Attention mechanism struct ggml_tensor* XTTSInference::attention( struct ggml_tensor* x, int layer_idx, bool use_cache ) { // Layer normalization struct ggml_tensor* normalized = layer_norm( x, layer_idx < model.ln1_weight.size() ? model.ln1_weight[layer_idx] : nullptr, layer_idx < model.ln1_bias.size() ? model.ln1_bias[layer_idx] : nullptr ); // QKV projection struct ggml_tensor* qkv = nullptr; if (layer_idx < model.attn_qkv.size() && model.attn_qkv[layer_idx]) { qkv = ggml_mul_mat(model.ctx, model.attn_qkv[layer_idx], normalized); } else { // Fallback if weights not loaded qkv = normalized; } // Split into Q, K, V int head_dim = hparams.n_embd / hparams.n_head; struct ggml_tensor* q = ggml_view_3d( model.ctx, qkv, head_dim, hparams.n_head, x->ne[1], head_dim * sizeof(float), hparams.n_embd * sizeof(float), 0 ); struct ggml_tensor* k = ggml_view_3d( model.ctx, qkv, head_dim, hparams.n_head, x->ne[1], head_dim * sizeof(float), hparams.n_embd * sizeof(float), hparams.n_embd * x->ne[1] * sizeof(float) ); struct ggml_tensor* v = ggml_view_3d( model.ctx, qkv, head_dim, hparams.n_head, x->ne[1], head_dim * sizeof(float), hparams.n_embd * sizeof(float), 2 * hparams.n_embd * x->ne[1] * sizeof(float) ); // Scaled dot-product attention float scale = 1.0f / sqrtf(static_cast(head_dim)); struct ggml_tensor* scores = ggml_mul_mat(model.ctx, k, q); scores = ggml_scale(model.ctx, scores, scale); // Apply causal mask scores = ggml_diag_mask_inf(model.ctx, scores, 0); // Softmax struct ggml_tensor* attn_weights = ggml_soft_max(model.ctx, scores); // Apply attention to values struct ggml_tensor* attn_output = ggml_mul_mat(model.ctx, v, attn_weights); // Reshape and project output attn_output = ggml_cont(model.ctx, ggml_permute( model.ctx, attn_output, 0, 2, 1, 3 )); attn_output = ggml_reshape_2d( model.ctx, attn_output, hparams.n_embd, x->ne[1] ); if (layer_idx < model.attn_out.size() && model.attn_out[layer_idx]) { attn_output = ggml_mul_mat(model.ctx, model.attn_out[layer_idx], attn_output); } // Residual connection return ggml_add(model.ctx, x, attn_output); } // Feed-forward network struct ggml_tensor* XTTSInference::ffn( struct ggml_tensor* x, int layer_idx ) { // Layer normalization struct ggml_tensor* normalized = layer_norm( x, layer_idx < model.ln2_weight.size() ? model.ln2_weight[layer_idx] : nullptr, layer_idx < model.ln2_bias.size() ? model.ln2_bias[layer_idx] : nullptr ); // FFN up projection struct ggml_tensor* up = normalized; if (layer_idx < model.ffn_up.size() && model.ffn_up[layer_idx]) { up = ggml_mul_mat(model.ctx, model.ffn_up[layer_idx], normalized); } // Activation (GELU) up = ggml_gelu(model.ctx, up); // FFN down projection if (layer_idx < model.ffn_down.size() && model.ffn_down[layer_idx]) { up = ggml_mul_mat(model.ctx, model.ffn_down[layer_idx], up); } // Residual connection return ggml_add(model.ctx, x, up); } // Layer normalization struct ggml_tensor* XTTSInference::layer_norm( struct ggml_tensor* x, struct ggml_tensor* weight, struct ggml_tensor* bias, float eps ) { struct ggml_tensor* normalized = ggml_norm(model.ctx, x, eps); if (weight) { normalized = ggml_mul(model.ctx, normalized, weight); } if (bias) { normalized = ggml_add(model.ctx, normalized, bias); } return normalized; } // Generate audio tokens autoregressively std::vector XTTSInference::generate_audio_tokens( struct ggml_tensor* text_features, float temperature ) { std::vector audio_tokens; audio_tokens.reserve(hparams.n_ctx_audio); // Start with special start token audio_tokens.push_back(0); // Generate tokens autoregressively for (int i = 0; i < hparams.n_ctx_audio; ++i) { // Get logits for next token struct ggml_tensor* logits = nullptr; if (model.audio_token_predictor) { // Use the last hidden state struct ggml_tensor* last_hidden = ggml_view_1d( model.ctx, text_features, hparams.n_embd, (text_features->ne[1] - 1) * hparams.n_embd * sizeof(float) ); logits = ggml_mul_mat(model.ctx, model.audio_token_predictor, last_hidden); } else { // Fallback: random generation logits = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, hparams.n_audio_tokens); for (int j = 0; j < hparams.n_audio_tokens; ++j) { ((float*)logits->data)[j] = static_cast(rand()) / RAND_MAX; } } // Sample next token int32_t next_token = sample_token(logits, temperature); audio_tokens.push_back(next_token); // Check for end token if (next_token == 1) { // Assuming 1 is end token break; } } return audio_tokens; } // Sample token from logits int32_t XTTSInference::sample_token( struct ggml_tensor* logits, float temperature, float top_p ) { int n_vocab = logits->ne[0]; std::vector probs(n_vocab); // Apply temperature for (int i = 0; i < n_vocab; ++i) { probs[i] = ((float*)logits->data)[i] / temperature; } // Softmax float max_logit = *std::max_element(probs.begin(), probs.end()); float sum = 0.0f; for (float& p : probs) { p = expf(p - max_logit); sum += p; } for (float& p : probs) { p /= sum; } // Top-p sampling std::vector> prob_indices; for (int i = 0; i < n_vocab; ++i) { prob_indices.push_back({probs[i], i}); } std::sort(prob_indices.begin(), prob_indices.end(), std::greater<>()); float cum_prob = 0.0f; size_t cutoff = 0; for (size_t i = 0; i < prob_indices.size(); ++i) { cum_prob += prob_indices[i].first; if (cum_prob >= top_p) { cutoff = i + 1; break; } } // Renormalize float norm_sum = 0.0f; for (size_t i = 0; i < cutoff; ++i) { norm_sum += prob_indices[i].first; } // Sample std::random_device rd; std::mt19937 gen(rd()); std::uniform_real_distribution dist(0.0f, norm_sum); float sample = dist(gen); cum_prob = 0.0f; for (size_t i = 0; i < cutoff; ++i) { cum_prob += prob_indices[i].first; if (cum_prob >= sample) { return prob_indices[i].second; } } return prob_indices[0].second; } // Vocoder forward pass std::vector XTTSInference::vocoder_forward( const std::vector& audio_tokens ) { // Convert tokens to mel spectrogram (simplified) // In practice, would use learned codebook size_t mel_frames = audio_tokens.size() / 2; struct ggml_tensor* mel = ggml_new_tensor_3d( model.ctx, GGML_TYPE_F32, hparams.n_mel_channels, mel_frames, 1 ); // Fill with dummy mel values (would be from codebook in real implementation) for (size_t i = 0; i < mel_frames; ++i) { for (int j = 0; j < hparams.n_mel_channels; ++j) { float value = (audio_tokens[i * 2] + audio_tokens[i * 2 + 1] * 256) / 65536.0f; ((float*)mel->data)[i * hparams.n_mel_channels + j] = value; } } // Apply vocoder struct ggml_tensor* audio = mel; // Initial convolution if (model.vocoder_preconv) { audio = ggml_conv_1d(model.ctx, model.vocoder_preconv, audio, 1, 1, 1); } // Upsampling blocks for (auto& layer : model.vocoder_ups) { if (layer) { audio = ggml_conv_transpose_1d(model.ctx, layer, audio, 2, 0, 1); audio = ggml_leaky_relu(model.ctx, audio, 0.1f, true); } } // Final convolution if (model.vocoder_postconv) { audio = ggml_conv_1d(model.ctx, model.vocoder_postconv, audio, 1, 1, 1); audio = ggml_tanh(model.ctx, audio); } // Extract audio samples size_t n_samples = audio->ne[0] * audio->ne[1]; std::vector samples(n_samples); memcpy(samples.data(), audio->data, n_samples * sizeof(float)); return samples; } // Main generation function std::vector XTTSInference::generate( const std::string& text, Language language, int speaker_id, float temperature, float speed ) { // Tokenize text std::vector tokens = tokenize(text); // Create speaker embedding std::vector speaker_embedding = create_speaker_embedding(speaker_id); // Encode text to features struct ggml_tensor* text_features = encode_text( tokens, language, speaker_embedding ); // Generate audio tokens std::vector audio_tokens = generate_audio_tokens( text_features, temperature ); // Convert to audio waveform std::vector audio = vocoder_forward(audio_tokens); // Apply speed adjustment if (speed != 1.0f && speed > 0.0f) { // Simple resampling for speed adjustment size_t new_size = static_cast(audio.size() / speed); std::vector resampled(new_size); for (size_t i = 0; i < new_size; ++i) { float src_idx = i * speed; size_t idx0 = static_cast(src_idx); size_t idx1 = std::min(idx0 + 1, audio.size() - 1); float frac = src_idx - idx0; resampled[i] = audio[idx0] * (1.0f - frac) + audio[idx1] * frac; } audio = std::move(resampled); } return audio; } // Stream generator implementation XTTSInference::StreamGenerator::StreamGenerator( XTTSInference* parent, const std::string& text, Language lang ) : parent_model(parent), language(lang), done(false) { // Tokenize text text_tokens = parent_model->tokenize(text); } XTTSInference::StreamGenerator::~StreamGenerator() { // Cleanup } void XTTSInference::StreamGenerator::generate_next_tokens(size_t n_tokens) { // Generate next batch of audio tokens // This would be implemented with proper streaming logic for (size_t i = 0; i < n_tokens && audio_tokens.size() < parent_model->hparams.n_ctx_audio; ++i) { audio_tokens.push_back(rand() % parent_model->hparams.n_audio_tokens); } } std::vector XTTSInference::StreamGenerator::get_next_chunk(size_t chunk_samples) { if (done) { return {}; } // Generate more tokens if needed if (current_token >= audio_tokens.size()) { generate_next_tokens(50); // Generate 50 tokens at a time } // Convert tokens to audio size_t tokens_for_chunk = std::min( static_cast(50), audio_tokens.size() - current_token ); if (tokens_for_chunk == 0) { done = true; return {}; } std::vector chunk_tokens( audio_tokens.begin() + current_token, audio_tokens.begin() + current_token + tokens_for_chunk ); current_token += tokens_for_chunk; // Use vocoder to convert to audio std::vector audio_chunk = parent_model->vocoder_forward(chunk_tokens); // Check if we're done if (current_token >= parent_model->hparams.n_ctx_audio || current_token >= audio_tokens.size()) { done = true; } return audio_chunk; } std::unique_ptr XTTSInference::create_stream( const std::string& text, Language language ) { return std::make_unique(this, text, language); } size_t XTTSInference::get_memory_usage() const { size_t total = 0; // Add context memory if (model.ctx) { total += ggml_used_mem(model.ctx); } // Add KV cache memory if (kv_cache.k_cache) { total += ggml_nbytes(kv_cache.k_cache); } if (kv_cache.v_cache) { total += ggml_nbytes(kv_cache.v_cache); } // Add mapped memory (though it's not in RAM if properly mmap'd) if (mapped_memory) { // Only count as overhead, actual memory is demand-paged total += sizeof(*this) + (1 << 20); // 1MB overhead estimate } return total; } // C API implementation extern "C" { void* xtts_init(const char* model_path, bool use_mmap) { auto* model = new XTTSInference(); if (!model->load_model(model_path, use_mmap)) { delete model; return nullptr; } return model; } float* xtts_generate( void* model_ptr, const char* text, int language, int speaker_id, float temperature, float speed, size_t* out_length ) { if (!model_ptr || !text || !out_length) { return nullptr; } auto* model = static_cast(model_ptr); auto audio = model->generate( text, static_cast(language), speaker_id, temperature, speed ); *out_length = audio.size(); float* result = new float[audio.size()]; memcpy(result, audio.data(), audio.size() * sizeof(float)); return result; } void* xtts_stream_init( void* model_ptr, const char* text, int language ) { if (!model_ptr || !text) { return nullptr; } auto* model = static_cast(model_ptr); auto stream = model->create_stream(text, static_cast(language)); return stream.release(); } float* xtts_stream_next( void* stream_ptr, size_t chunk_size, size_t* out_length ) { if (!stream_ptr || !out_length) { return nullptr; } auto* stream = static_cast(stream_ptr); auto chunk = stream->get_next_chunk(chunk_size); if (chunk.empty()) { *out_length = 0; return nullptr; } *out_length = chunk.size(); float* result = new float[chunk.size()]; memcpy(result, chunk.data(), chunk.size() * sizeof(float)); return result; } void xtts_stream_free(void* stream_ptr) { if (stream_ptr) { delete static_cast(stream_ptr); } } void xtts_free(void* model_ptr) { if (model_ptr) { delete static_cast(model_ptr); } } void xtts_free_audio(float* audio_ptr) { delete[] audio_ptr; } } // extern "C" } // namespace xtts