File size: 14,469 Bytes
cfcbbc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
#!/usr/bin/env python3
"""
logs_interpreter.py
Parse log files, call the CBORG model to diagnose root causes of failures (or confirm success), and output its analysis.
"""
import os
import sys
import argparse
try:
from openai import OpenAI # type: ignore
except ImportError:
print("Please install openai (pip install openai)")
sys.exit(1)
def parse_args():
parser = argparse.ArgumentParser(
description="Analyze run logs and ask CBORG model for root-cause analysis"
)
parser.add_argument(
"--log_dir", default=".",
help="Directory containing .txt log files (default: current directory)"
)
parser.add_argument(
"--model", default="lbl/cborg-deepthought",
help="CBORG model to use (default: lbl/cborg-deepthought)"
)
parser.add_argument(
"--output", default=None,
help="File to write the model's analysis (default: stdout)"
)
return parser.parse_args()
def gather_logs(log_dir):
# If logs are under a nested 'logs' directory, use that first
if os.path.isdir(os.path.join(log_dir, 'logs')):
log_base = os.path.join(log_dir, 'logs')
else:
log_base = log_dir
# Group TXT log files by prefix (before the last underscore)
files = [f for f in sorted(os.listdir(log_base)) if f.endswith('.txt')]
groups = {}
for fname in files:
if '_' in fname:
base = fname.rsplit('_', 1)[0]
else:
base = fname.rsplit('.', 1)[0]
groups.setdefault(base, []).append(fname)
segments = []
# Assemble grouped log contents
for base, flist in groups.items():
segments.append(f"=== Log group: {base} ===")
for fname in flist:
path = os.path.join(log_dir, fname)
try:
with open(path, 'r') as f:
content = f.read().strip()
except Exception as e:
content = f"<could not read: {e}>"
segments.append(f"-- {fname} --\n{content}")
segments.append("")
# Include Snakemake run logs from possible locations
# 1) sibling 'snakemake_log' folder
# 2) nested '.snakemake/log' under log_dir
candidates = [os.path.join(log_dir, 'snakemake_log'),
os.path.join(log_dir, '.snakemake', 'log')]
for sn_dir in candidates:
if os.path.isdir(sn_dir):
for fname in sorted(os.listdir(sn_dir)):
if fname.endswith('.log'):
path = os.path.join(sn_dir, fname)
try:
with open(path, 'r') as f:
content = f.read().strip()
except Exception as e:
content = f"<could not read: {e}>"
segments.append(f"=== Snakemake Log File: {fname} ===")
segments.append(content)
segments.append("")
return "\n".join(segments)
def call_cborg(prompt, model):
api_key = os.getenv("CBORG_API_KEY") or os.getenv("OPENAI_API_KEY")
if not api_key:
print("Error: CBORG_API_KEY or OPENAI_API_KEY environment variable not set.")
sys.exit(1)
# Initialize the CBORG/OpenAI client with the appropriate API endpoint
cborg_url = os.getenv("CBORG_API_URL", "https://api.cborg.lbl.gov")
client = OpenAI(api_key=api_key, base_url=cborg_url)
# Call the chat completions endpoint
response = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": "You are a log root-cause analyzer. Provide a concise diagnosis."},
{"role": "user", "content": prompt},
],
temperature=0.2,
)
# Safely extract content
choice = response.choices[0]
content = None
if hasattr(choice, 'message') and choice.message:
content = getattr(choice.message, 'content', None)
if content is None and hasattr(choice, 'text'):
content = choice.text
if content is None:
content = ''
return content.strip()
def main():
args = parse_args()
# If the log_dir contains run subdirectories with their own 'logs' folders, gather per-run
runs = [d for d in sorted(os.listdir(args.log_dir))
if os.path.isdir(os.path.join(args.log_dir, d)) and d != '.snakemake']
# Determine base log directory (for nested runs or single run)
# Determine the folder containing .txt logs
log_folder = os.path.join(args.log_dir, 'logs') if os.path.isdir(os.path.join(args.log_dir, 'logs')) else args.log_dir
if runs and os.path.isdir(os.path.join(args.log_dir, runs[0], 'logs')):
combined = []
for run in runs:
combined.append(f"=== Run: {run} ===")
run_log_dir = os.path.join(args.log_dir, run, 'logs')
combined.append(gather_logs(run_log_dir))
# Include root-level Snakemake logs if present
root_snake = os.path.join(args.log_dir, '.snakemake', 'log')
if os.path.isdir(root_snake):
combined.append("=== Root Snakemake Logs ===")
for fname in sorted(os.listdir(root_snake)):
if fname.endswith('.log'):
path = os.path.join(root_snake, fname)
try:
content = open(path).read().strip()
except Exception:
content = "<could not read>"
combined.append(f"-- {fname} --\n{content}")
logs = "\n\n".join(combined)
else:
# Gather logs from determined log_folder
logs = gather_logs(log_folder)
# Prepend a listing of available .txt files in the log_folder for clarity
try:
entries = sorted(f for f in os.listdir(log_folder) if f.endswith('.txt'))
listing = "=== Logs directory files (txt) ===\n" + "\n".join(entries) + "\n\n"
except Exception:
listing = ""
logs = listing + logs
if not logs:
print(f"No log files found in {args.log_dir}")
sys.exit(0)
# Include stats.csv summary and filter logs for failed steps
stats_file = os.path.join(args.log_dir, 'stats.csv')
if os.path.isfile(stats_file):
try:
with open(stats_file, 'r') as sf:
stats_content = sf.read().strip()
except Exception as e:
stats_content = f"<could not read stats.csv: {e}>"
# Begin prompt logs with stats summary
logs = f"=== Stats Summary ===\n{stats_content}\n\n"
# Parse CSV to identify failed steps
try:
with open(stats_file, 'r') as sf:
# Read the entire CSV content and parse manually due to potential line wrapping
content = sf.read().strip()
lines = content.split('\n')
# Find the data line (starts with '* ')
data_line = None
for line in lines:
if line.strip().startswith('* '):
data_line = line.strip()[2:] # Remove '* ' prefix
break
if data_line:
# Parse the data manually: model_name, step1_success, step1_time, step1_calls, step1_in, step1_out, step2_success, etc.
parts = [part.strip() for part in data_line.split(',')]
if len(parts) >= 16: # Ensure we have enough columns
stats_row = {
'step 1 success?': parts[1], # Index 1: step 1 success
'step 2 success?': parts[6], # Index 6: step 2 success
'step 3 success?': parts[11], # Index 11: step 3 success
}
else:
stats_row = {}
else:
stats_row = {}
except Exception as e:
print(f"Warning: Could not parse CSV: {e}")
stats_row = {}
# Map step numbers to rule prefixes
step_rules = {
'1': ['create_numpy', 'insert_root_summary', 'preprocess', 'summarize_root'],
'2': ['scores'],
'3': ['categorization'],
}
# List available txt entries
entries = []
try:
entries = sorted(f for f in os.listdir(log_folder) if f.endswith('.txt'))
except Exception:
pass
# Build filtered log segments for each step (both failed and passed for context)
filtered = []
# Always include stats parsing for context
filtered.append("=== STEP STATUS FROM STATS.CSV ===")
for step, rules in step_rules.items():
key = f'step {step} success?'
status = stats_row.get(key, 'Unknown').strip()
filtered.append(f"Step {step}: {status}")
filtered.append("")
# Include logs for failed steps and their associated rules
failed_steps = []
for step, rules in step_rules.items():
key = f'step {step} success?'
if stats_row.get(key, '').lower() != 'true':
failed_steps.append(step)
filtered.append(f"=== FAILED STEP {step} LOGS ===")
for rule in rules:
filtered.append(f"--- Rule: {rule} ---")
matched = [f for f in entries if f.startswith(rule + '_')]
if matched:
for fname in matched:
path = os.path.join(log_folder, fname)
try:
content = open(path).read().strip()
# Truncate very long logs to focus on key parts
if len(content) > 5000:
lines = content.split('\n')
content = '\n'.join(lines[:100]) + "\n...[TRUNCATED]...\n" + '\n'.join(lines[-50:])
except Exception as e:
content = f"<could not read: {e}>"
filtered.append(f"Log file: {fname}")
filtered.append(content)
else:
filtered.append("No log files found for this rule.")
filtered.append("")
# Add Snakemake logs for execution context
snakemake_dir = os.path.join(args.log_dir, 'snakemake_log')
if os.path.isdir(snakemake_dir):
filtered.append("=== SNAKEMAKE EXECUTION LOGS ===")
for fname in sorted(os.listdir(snakemake_dir)):
if fname.endswith('.log'):
path = os.path.join(snakemake_dir, fname)
try:
content = open(path).read().strip()
# Focus on errors and warnings in Snakemake logs
lines = content.split('\n')
important_lines = []
for line in lines:
if any(keyword in line.lower() for keyword in ['error', 'exception', 'failed', 'warning', 'killed']):
important_lines.append(line)
if important_lines:
filtered.append(f"Snakemake log: {fname} (errors/warnings only)")
filtered.append('\n'.join(important_lines[-20:])) # Last 20 error lines
else:
filtered.append(f"Snakemake log: {fname} - No errors detected")
except Exception as e:
filtered.append(f"<could not read {fname}: {e}>")
filtered.append("")
# Append filtered logs
logs += "\n".join(filtered)
# Build prompt: a single f-string literal with embedded logs (no leading newline)
prompt = f"""You are analyzing a machine learning pipeline failure. Your task is to diagnose root causes by examining three sources:
1) stats.csv: Shows pass/fail status for 3 steps:
- Step 1 (Data Preparation): create_numpy, insert_root_summary, preprocess, summarize_root
- Step 2 (Scoring): scores
- Step 3 (Categorization): categorization
2) Individual .txt logs in logs/: Contain detailed execution output for each rule attempt
3) Snakemake logs: Show workflow execution status and any workflow-level errors
ANALYSIS REQUIREMENTS:
Create a diagnostic report using this format for each step:
------
Step X (Category of failure)
------
Rule: [rule_name]
------
Status: [Pass/Fail from stats.csv] | [Snakemake execution status]
------
Root Cause Analysis: [detailed analysis]
------
For each failed step (False in stats.csv):
- Examine ALL relevant .txt log files for that step's rules
- Look for specific error messages, exceptions, or failure indicators
- Identify the probable root cause (e.g., missing files, API failures, memory issues, logic errors, syntax errors)
- If logs show success messages but stats.csv shows failure, investigate this discrepancy
- Categorize the failure type (Data/API/Logic/Infrastructure/Other)
For passed steps (True in stats.csv):
- Simply mark as "OK" in Root Cause Analysis
After the table, provide:
1. Overall Status: SUCCESS or FAILURE using similar format as above.
2. Primary Failure Category (if applicable): Data/API/Logic/Infrastructure/Other
3. Recommended Next Steps
DATA TO ANALYZE:
{logs}
"""
# DEBUG: Uncomment to see full prompt
# print("=== PROMPT BEING SENT TO CBORG ===")
# print(prompt)
# print("=== END PROMPT ===\n")
analysis = call_cborg(prompt, args.model)
# Fallback if model returns empty
if not analysis or not analysis.strip():
analysis = (
"Warning: CBORG model returned no analysis.\n"
"Below is the prompt sent to the model for debugging:\n\n" + prompt
)
# Determine output path: either user-specified or default under log_dir
# Write analysis to logs_analysis.txt by default in the log directory
output_file = args.output or os.path.join(args.log_dir, 'logs_analysis.txt')
try:
with open(output_file, 'w') as f:
f.write(analysis + "\n")
print(f"Analysis written to {output_file}")
except Exception as e:
print(f"Error writing analysis to {output_file}: {e}")
if __name__ == "__main__":
main()
|