Classification Training
Browse files
README.md
CHANGED
|
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 21 |
|
| 22 |
This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the None dataset.
|
| 23 |
It achieves the following results on the evaluation set:
|
| 24 |
-
- Loss: 0.
|
| 25 |
-
- Accuracy: 0.
|
| 26 |
-
- F1: 0.
|
| 27 |
-
- Precision: 0.
|
| 28 |
-
- Recall: 0.
|
| 29 |
|
| 30 |
## Model description
|
| 31 |
|
|
@@ -60,42 +60,42 @@ The following hyperparameters were used during training:
|
|
| 60 |
|
| 61 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
| 62 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
| 63 |
-
| 4.
|
| 64 |
-
| 4.
|
| 65 |
-
| 4.
|
| 66 |
-
| 4.
|
| 67 |
-
| 4.
|
| 68 |
-
| 4.
|
| 69 |
-
|
|
| 70 |
-
| 3.
|
| 71 |
-
|
|
| 72 |
-
| 2.
|
| 73 |
-
|
|
| 74 |
-
| 1.
|
| 75 |
-
| 1.
|
| 76 |
-
| 0.
|
| 77 |
-
| 0.
|
| 78 |
-
| 0.
|
| 79 |
-
| 0.
|
| 80 |
-
| 0.
|
| 81 |
-
| 0.
|
| 82 |
-
| 0.
|
| 83 |
-
| 0.
|
| 84 |
-
| 0.
|
| 85 |
-
| 0.
|
| 86 |
-
| 0.
|
| 87 |
-
| 0.
|
| 88 |
-
| 0.
|
| 89 |
-
| 0.0108 | 18.4932 | 1350 | 0.
|
| 90 |
-
| 0.
|
| 91 |
-
| 0.
|
| 92 |
-
| 0.
|
| 93 |
-
| 0.
|
| 94 |
-
| 0.
|
| 95 |
-
| 0.
|
| 96 |
-
| 0.
|
| 97 |
-
| 0.
|
| 98 |
-
| 0.
|
| 99 |
|
| 100 |
|
| 101 |
### Framework versions
|
|
|
|
| 21 |
|
| 22 |
This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the None dataset.
|
| 23 |
It achieves the following results on the evaluation set:
|
| 24 |
+
- Loss: 0.6839
|
| 25 |
+
- Accuracy: 0.8254
|
| 26 |
+
- F1: 0.8236
|
| 27 |
+
- Precision: 0.8363
|
| 28 |
+
- Recall: 0.8254
|
| 29 |
|
| 30 |
## Model description
|
| 31 |
|
|
|
|
| 60 |
|
| 61 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
| 62 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
| 63 |
+
| 4.9451 | 0.6849 | 50 | 2.4266 | 0.1190 | 0.0734 | 0.0812 | 0.1190 |
|
| 64 |
+
| 4.9004 | 1.3699 | 100 | 2.4006 | 0.1508 | 0.1049 | 0.1791 | 0.1508 |
|
| 65 |
+
| 4.864 | 2.0548 | 150 | 2.3589 | 0.1667 | 0.1427 | 0.1829 | 0.1667 |
|
| 66 |
+
| 4.7694 | 2.7397 | 200 | 2.3013 | 0.1984 | 0.1656 | 0.1611 | 0.1984 |
|
| 67 |
+
| 4.5881 | 3.4247 | 250 | 2.2257 | 0.2778 | 0.2715 | 0.3458 | 0.2778 |
|
| 68 |
+
| 4.4949 | 4.1096 | 300 | 2.0636 | 0.4127 | 0.3981 | 0.4152 | 0.4127 |
|
| 69 |
+
| 4.0569 | 4.7945 | 350 | 1.8632 | 0.5397 | 0.5396 | 0.5936 | 0.5397 |
|
| 70 |
+
| 3.6327 | 5.4795 | 400 | 1.6784 | 0.6190 | 0.6196 | 0.6836 | 0.6190 |
|
| 71 |
+
| 3.0577 | 6.1644 | 450 | 1.4586 | 0.6429 | 0.6206 | 0.6410 | 0.6429 |
|
| 72 |
+
| 2.6585 | 6.8493 | 500 | 1.2315 | 0.7063 | 0.7024 | 0.7198 | 0.7063 |
|
| 73 |
+
| 2.0628 | 7.5342 | 550 | 1.0891 | 0.7381 | 0.7300 | 0.7656 | 0.7381 |
|
| 74 |
+
| 1.5864 | 8.2192 | 600 | 0.9558 | 0.7857 | 0.7781 | 0.8529 | 0.7857 |
|
| 75 |
+
| 1.1035 | 8.9041 | 650 | 0.8837 | 0.7698 | 0.7657 | 0.8141 | 0.7698 |
|
| 76 |
+
| 0.8962 | 9.5890 | 700 | 0.8059 | 0.8254 | 0.8178 | 0.8573 | 0.8254 |
|
| 77 |
+
| 0.6185 | 10.2740 | 750 | 0.7363 | 0.8492 | 0.8527 | 0.8948 | 0.8492 |
|
| 78 |
+
| 0.4703 | 10.9589 | 800 | 0.6929 | 0.8254 | 0.8237 | 0.8539 | 0.8254 |
|
| 79 |
+
| 0.3438 | 11.6438 | 850 | 0.6574 | 0.8175 | 0.8192 | 0.8409 | 0.8175 |
|
| 80 |
+
| 0.2744 | 12.3288 | 900 | 0.6597 | 0.8175 | 0.8131 | 0.8335 | 0.8175 |
|
| 81 |
+
| 0.1704 | 13.0137 | 950 | 0.6842 | 0.8175 | 0.8188 | 0.8592 | 0.8175 |
|
| 82 |
+
| 0.1469 | 13.6986 | 1000 | 0.6285 | 0.8333 | 0.8286 | 0.8475 | 0.8333 |
|
| 83 |
+
| 0.0849 | 14.3836 | 1050 | 0.6737 | 0.8095 | 0.8112 | 0.8460 | 0.8095 |
|
| 84 |
+
| 0.1058 | 15.0685 | 1100 | 0.6356 | 0.8413 | 0.8383 | 0.8545 | 0.8413 |
|
| 85 |
+
| 0.069 | 15.7534 | 1150 | 0.6495 | 0.8333 | 0.8364 | 0.8672 | 0.8333 |
|
| 86 |
+
| 0.0304 | 16.4384 | 1200 | 0.6442 | 0.8492 | 0.8484 | 0.8687 | 0.8492 |
|
| 87 |
+
| 0.0548 | 17.1233 | 1250 | 0.6309 | 0.8413 | 0.8366 | 0.8560 | 0.8413 |
|
| 88 |
+
| 0.0388 | 17.8082 | 1300 | 0.6645 | 0.8254 | 0.8258 | 0.8468 | 0.8254 |
|
| 89 |
+
| 0.0108 | 18.4932 | 1350 | 0.6785 | 0.8413 | 0.8380 | 0.8581 | 0.8413 |
|
| 90 |
+
| 0.0396 | 19.1781 | 1400 | 0.6720 | 0.8175 | 0.8196 | 0.8410 | 0.8175 |
|
| 91 |
+
| 0.0237 | 19.8630 | 1450 | 0.6676 | 0.8333 | 0.8328 | 0.8440 | 0.8333 |
|
| 92 |
+
| 0.0084 | 20.5479 | 1500 | 0.6876 | 0.8254 | 0.8237 | 0.8389 | 0.8254 |
|
| 93 |
+
| 0.0451 | 21.2329 | 1550 | 0.6760 | 0.8333 | 0.8333 | 0.8497 | 0.8333 |
|
| 94 |
+
| 0.0204 | 21.9178 | 1600 | 0.6818 | 0.8333 | 0.8333 | 0.8497 | 0.8333 |
|
| 95 |
+
| 0.0151 | 22.6027 | 1650 | 0.6830 | 0.8095 | 0.8099 | 0.8276 | 0.8095 |
|
| 96 |
+
| 0.02 | 23.2877 | 1700 | 0.6841 | 0.8254 | 0.8237 | 0.8389 | 0.8254 |
|
| 97 |
+
| 0.0057 | 23.9726 | 1750 | 0.6829 | 0.8254 | 0.8236 | 0.8363 | 0.8254 |
|
| 98 |
+
| 0.006 | 24.6575 | 1800 | 0.6839 | 0.8254 | 0.8236 | 0.8363 | 0.8254 |
|
| 99 |
|
| 100 |
|
| 101 |
### Framework versions
|