Classification Training
Browse files
README.md
CHANGED
|
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 21 |
|
| 22 |
This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the None dataset.
|
| 23 |
It achieves the following results on the evaluation set:
|
| 24 |
-
- Loss:
|
| 25 |
-
- Accuracy: 0.
|
| 26 |
-
- F1: 0.
|
| 27 |
-
- Precision: 0.
|
| 28 |
-
- Recall: 0.
|
| 29 |
|
| 30 |
## Model description
|
| 31 |
|
|
@@ -48,44 +48,59 @@ The following hyperparameters were used during training:
|
|
| 48 |
- train_batch_size: 2
|
| 49 |
- eval_batch_size: 2
|
| 50 |
- seed: 42
|
| 51 |
-
- gradient_accumulation_steps:
|
| 52 |
-
- total_train_batch_size:
|
| 53 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 54 |
- lr_scheduler_type: linear
|
| 55 |
- lr_scheduler_warmup_steps: 500
|
| 56 |
-
- num_epochs:
|
| 57 |
- mixed_precision_training: Native AMP
|
| 58 |
|
| 59 |
### Training results
|
| 60 |
|
| 61 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
| 62 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
| 63 |
-
|
|
| 64 |
-
|
|
| 65 |
-
|
|
| 66 |
-
|
|
| 67 |
-
|
|
| 68 |
-
|
|
| 69 |
-
| 4.
|
| 70 |
-
|
|
| 71 |
-
|
|
| 72 |
-
|
|
| 73 |
-
|
|
| 74 |
-
|
|
| 75 |
-
|
|
| 76 |
-
|
|
| 77 |
-
|
|
| 78 |
-
|
|
| 79 |
-
|
|
| 80 |
-
|
|
| 81 |
-
| 0.
|
| 82 |
-
| 0.
|
| 83 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
|
| 86 |
### Framework versions
|
| 87 |
|
| 88 |
-
- Transformers 4.48.
|
| 89 |
- Pytorch 2.5.1+cu124
|
| 90 |
-
- Datasets 3.
|
| 91 |
- Tokenizers 0.21.0
|
|
|
|
| 21 |
|
| 22 |
This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the None dataset.
|
| 23 |
It achieves the following results on the evaluation set:
|
| 24 |
+
- Loss: 1.0465
|
| 25 |
+
- Accuracy: 0.7222
|
| 26 |
+
- F1: 0.7251
|
| 27 |
+
- Precision: 0.7350
|
| 28 |
+
- Recall: 0.7222
|
| 29 |
|
| 30 |
## Model description
|
| 31 |
|
|
|
|
| 48 |
- train_batch_size: 2
|
| 49 |
- eval_batch_size: 2
|
| 50 |
- seed: 42
|
| 51 |
+
- gradient_accumulation_steps: 2
|
| 52 |
+
- total_train_batch_size: 4
|
| 53 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 54 |
- lr_scheduler_type: linear
|
| 55 |
- lr_scheduler_warmup_steps: 500
|
| 56 |
+
- num_epochs: 25
|
| 57 |
- mixed_precision_training: Native AMP
|
| 58 |
|
| 59 |
### Training results
|
| 60 |
|
| 61 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
| 62 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
| 63 |
+
| 5.0331 | 0.6849 | 50 | 2.4889 | 0.0476 | 0.0310 | 0.0241 | 0.0476 |
|
| 64 |
+
| 4.8321 | 1.3699 | 100 | 2.4703 | 0.0794 | 0.0509 | 0.0396 | 0.0794 |
|
| 65 |
+
| 4.8811 | 2.0548 | 150 | 2.4370 | 0.0873 | 0.0587 | 0.0487 | 0.0873 |
|
| 66 |
+
| 4.8198 | 2.7397 | 200 | 2.4201 | 0.0952 | 0.0662 | 0.0670 | 0.0952 |
|
| 67 |
+
| 4.7571 | 3.4247 | 250 | 2.4151 | 0.1190 | 0.0876 | 0.1070 | 0.1190 |
|
| 68 |
+
| 4.6927 | 4.1096 | 300 | 2.3845 | 0.1270 | 0.1051 | 0.1038 | 0.1270 |
|
| 69 |
+
| 4.607 | 4.7945 | 350 | 2.3643 | 0.1508 | 0.1431 | 0.1732 | 0.1508 |
|
| 70 |
+
| 4.5543 | 5.4795 | 400 | 2.3641 | 0.1508 | 0.1376 | 0.1467 | 0.1508 |
|
| 71 |
+
| 4.2468 | 6.1644 | 450 | 2.2960 | 0.1984 | 0.1655 | 0.1800 | 0.1984 |
|
| 72 |
+
| 4.1548 | 6.8493 | 500 | 2.1901 | 0.2381 | 0.2339 | 0.3055 | 0.2381 |
|
| 73 |
+
| 3.7031 | 7.5342 | 550 | 2.0601 | 0.3571 | 0.3299 | 0.4862 | 0.3571 |
|
| 74 |
+
| 3.4466 | 8.2192 | 600 | 2.0129 | 0.3651 | 0.3678 | 0.4649 | 0.3651 |
|
| 75 |
+
| 3.0481 | 8.9041 | 650 | 1.8144 | 0.4365 | 0.4292 | 0.4630 | 0.4365 |
|
| 76 |
+
| 2.5507 | 9.5890 | 700 | 1.6802 | 0.4921 | 0.4820 | 0.4894 | 0.4921 |
|
| 77 |
+
| 2.1803 | 10.2740 | 750 | 1.5281 | 0.5635 | 0.5703 | 0.6068 | 0.5635 |
|
| 78 |
+
| 1.7031 | 10.9589 | 800 | 1.4110 | 0.5714 | 0.5538 | 0.5561 | 0.5714 |
|
| 79 |
+
| 1.4117 | 11.6438 | 850 | 1.3102 | 0.6349 | 0.6388 | 0.6649 | 0.6349 |
|
| 80 |
+
| 1.0765 | 12.3288 | 900 | 1.2092 | 0.6746 | 0.6693 | 0.6834 | 0.6746 |
|
| 81 |
+
| 0.8571 | 13.0137 | 950 | 1.2143 | 0.6746 | 0.6679 | 0.6859 | 0.6746 |
|
| 82 |
+
| 0.6671 | 13.6986 | 1000 | 1.1043 | 0.6905 | 0.6811 | 0.6961 | 0.6905 |
|
| 83 |
+
| 0.5448 | 14.3836 | 1050 | 1.0635 | 0.7063 | 0.7057 | 0.7239 | 0.7063 |
|
| 84 |
+
| 0.419 | 15.0685 | 1100 | 1.0836 | 0.7381 | 0.7366 | 0.7522 | 0.7381 |
|
| 85 |
+
| 0.3435 | 15.7534 | 1150 | 1.0320 | 0.7063 | 0.7130 | 0.7487 | 0.7063 |
|
| 86 |
+
| 0.2654 | 16.4384 | 1200 | 1.0282 | 0.7063 | 0.7026 | 0.7209 | 0.7063 |
|
| 87 |
+
| 0.1986 | 17.1233 | 1250 | 1.0172 | 0.7063 | 0.7076 | 0.7218 | 0.7063 |
|
| 88 |
+
| 0.1714 | 17.8082 | 1300 | 1.0305 | 0.7302 | 0.7297 | 0.7572 | 0.7302 |
|
| 89 |
+
| 0.118 | 18.4932 | 1350 | 1.0045 | 0.7302 | 0.7293 | 0.7456 | 0.7302 |
|
| 90 |
+
| 0.1293 | 19.1781 | 1400 | 1.0415 | 0.7381 | 0.7402 | 0.7566 | 0.7381 |
|
| 91 |
+
| 0.0934 | 19.8630 | 1450 | 1.0429 | 0.7143 | 0.7183 | 0.7376 | 0.7143 |
|
| 92 |
+
| 0.0598 | 20.5479 | 1500 | 1.0438 | 0.7302 | 0.7310 | 0.7397 | 0.7302 |
|
| 93 |
+
| 0.0651 | 21.2329 | 1550 | 1.0299 | 0.7143 | 0.7187 | 0.7335 | 0.7143 |
|
| 94 |
+
| 0.0618 | 21.9178 | 1600 | 1.0538 | 0.7143 | 0.7185 | 0.7313 | 0.7143 |
|
| 95 |
+
| 0.0664 | 22.6027 | 1650 | 1.0280 | 0.7381 | 0.7394 | 0.7552 | 0.7381 |
|
| 96 |
+
| 0.0662 | 23.2877 | 1700 | 1.0319 | 0.7302 | 0.7320 | 0.7426 | 0.7302 |
|
| 97 |
+
| 0.0315 | 23.9726 | 1750 | 1.0467 | 0.7222 | 0.7251 | 0.7350 | 0.7222 |
|
| 98 |
+
| 0.0462 | 24.6575 | 1800 | 1.0465 | 0.7222 | 0.7251 | 0.7350 | 0.7222 |
|
| 99 |
|
| 100 |
|
| 101 |
### Framework versions
|
| 102 |
|
| 103 |
+
- Transformers 4.48.3
|
| 104 |
- Pytorch 2.5.1+cu124
|
| 105 |
+
- Datasets 3.3.1
|
| 106 |
- Tokenizers 0.21.0
|