JK-TK commited on
Commit
189a4ce
·
verified ·
1 Parent(s): 894698e

🚀 Upload trained model and tokenizer

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/phi-3-mini-4k-instruct-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/phi-3-mini-4k-instruct-bnb-4bit",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": [
22
+ "embed_tokens",
23
+ "lm_head"
24
+ ],
25
+ "peft_type": "LORA",
26
+ "r": 128,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": [
30
+ "down_proj",
31
+ "k_proj",
32
+ "up_proj",
33
+ "v_proj",
34
+ "q_proj",
35
+ "gate_proj",
36
+ "o_proj"
37
+ ],
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_rslora": true
42
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1667fcfd11bb08cf2402bcf0eb554840889469df7774c1cc6ea68d676e43d754
3
+ size 1744368120
added_tokens.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|assistant|>": 32001,
3
+ "<|endoftext|>": 32000,
4
+ "<|end|>": 32007,
5
+ "<|placeholder1|>": 32002,
6
+ "<|placeholder2|>": 32003,
7
+ "<|placeholder3|>": 32004,
8
+ "<|placeholder4|>": 32005,
9
+ "<|placeholder5|>": 32008,
10
+ "<|placeholder6|>": 32009,
11
+ "<|system|>": 32006,
12
+ "<|user|>": 32010
13
+ }
chat_template.jinja ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {% for message in messages %}{% if message['role'] == 'system' %}{{'<|system|>
2
+ ' + message['content'] + '<|end|>
3
+ '}}{% elif message['role'] == 'user' %}{{'<|user|>
4
+ ' + message['content'] + '<|end|>
5
+ '}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>
6
+ ' + message['content'] + '<|end|>
7
+ '}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>
8
+ ' }}{% else %}{{ eos_token }}{% endif %}
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:296e7330707abe3201cfb056b1c0178178c7181b0cdc56238c7f729752d849a3
3
+ size 886310701
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1d565802a8e26c4e8a31328752b7a7fdc186d9401aa008e65697d0ad8c22e33
3
+ size 14645
scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87eb86d97797b1965febb114b328173c1f2cb736453f222f80223f9761104f19
3
+ size 1383
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6357529b9e6b8e0a281bffde5861a7f7157748a7bfce450ab4580084874abc8
3
+ size 1465
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|placeholder6|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": true,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "clean_up_tokenization_spaces": false,
121
+ "eos_token": "<|endoftext|>",
122
+ "extra_special_tokens": {},
123
+ "legacy": false,
124
+ "model_max_length": 4096,
125
+ "pad_token": "<|placeholder6|>",
126
+ "padding_side": "right",
127
+ "sp_model_kwargs": {},
128
+ "tokenizer_class": "LlamaTokenizer",
129
+ "unk_token": "<unk>",
130
+ "use_default_system_prompt": false
131
+ }
trainer_state.json ADDED
@@ -0,0 +1,2225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 500,
7
+ "global_step": 313,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0032,
14
+ "grad_norm": 1.2938580513000488,
15
+ "learning_rate": 0.0,
16
+ "loss": 2.3978,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.0064,
21
+ "grad_norm": 1.3802108764648438,
22
+ "learning_rate": 1.5625e-06,
23
+ "loss": 2.1638,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.0096,
28
+ "grad_norm": 1.401850700378418,
29
+ "learning_rate": 3.125e-06,
30
+ "loss": 2.0659,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.0128,
35
+ "grad_norm": NaN,
36
+ "learning_rate": 4.6875000000000004e-06,
37
+ "loss": 2.466,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.016,
42
+ "grad_norm": 1.5032564401626587,
43
+ "learning_rate": 4.6875000000000004e-06,
44
+ "loss": 2.088,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.0192,
49
+ "grad_norm": 3.115506172180176,
50
+ "learning_rate": 6.25e-06,
51
+ "loss": 2.0598,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.0224,
56
+ "grad_norm": 1.3768525123596191,
57
+ "learning_rate": 7.8125e-06,
58
+ "loss": 2.2994,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.0256,
63
+ "grad_norm": 1.4846614599227905,
64
+ "learning_rate": 9.375000000000001e-06,
65
+ "loss": 2.0359,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.0288,
70
+ "grad_norm": 4.242325782775879,
71
+ "learning_rate": 1.09375e-05,
72
+ "loss": 1.9999,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.032,
77
+ "grad_norm": 2.884045362472534,
78
+ "learning_rate": 1.25e-05,
79
+ "loss": 1.6543,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.0352,
84
+ "grad_norm": 1.1325325965881348,
85
+ "learning_rate": 1.4062500000000001e-05,
86
+ "loss": 2.5745,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.0384,
91
+ "grad_norm": 1.1092923879623413,
92
+ "learning_rate": 1.5625e-05,
93
+ "loss": 2.3241,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.0416,
98
+ "grad_norm": 1.071656346321106,
99
+ "learning_rate": 1.71875e-05,
100
+ "loss": 2.3016,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.0448,
105
+ "grad_norm": 1.2169474363327026,
106
+ "learning_rate": 1.8750000000000002e-05,
107
+ "loss": 1.9022,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.048,
112
+ "grad_norm": 1.1128144264221191,
113
+ "learning_rate": 2.0312500000000002e-05,
114
+ "loss": 2.0983,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.0512,
119
+ "grad_norm": 1.367555022239685,
120
+ "learning_rate": 2.1875e-05,
121
+ "loss": 2.3887,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.0544,
126
+ "grad_norm": 1.3732932806015015,
127
+ "learning_rate": 2.34375e-05,
128
+ "loss": 2.4338,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.0576,
133
+ "grad_norm": 1.0335572957992554,
134
+ "learning_rate": 2.5e-05,
135
+ "loss": 2.1441,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.0608,
140
+ "grad_norm": 1.057332158088684,
141
+ "learning_rate": 2.6562500000000002e-05,
142
+ "loss": 2.4553,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.064,
147
+ "grad_norm": 0.9568037986755371,
148
+ "learning_rate": 2.8125000000000003e-05,
149
+ "loss": 2.1104,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.0672,
154
+ "grad_norm": 0.9306254982948303,
155
+ "learning_rate": 2.96875e-05,
156
+ "loss": 1.936,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.0704,
161
+ "grad_norm": 0.9852834343910217,
162
+ "learning_rate": 3.125e-05,
163
+ "loss": 2.3996,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.0736,
168
+ "grad_norm": 1.0083969831466675,
169
+ "learning_rate": 3.2812500000000005e-05,
170
+ "loss": 2.3265,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.0768,
175
+ "grad_norm": 2.5204765796661377,
176
+ "learning_rate": 3.4375e-05,
177
+ "loss": 2.3637,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.08,
182
+ "grad_norm": 0.87235027551651,
183
+ "learning_rate": 3.59375e-05,
184
+ "loss": 2.049,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.0832,
189
+ "grad_norm": 1.0738499164581299,
190
+ "learning_rate": 3.7500000000000003e-05,
191
+ "loss": 2.2154,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.0864,
196
+ "grad_norm": 1.1177905797958374,
197
+ "learning_rate": 3.90625e-05,
198
+ "loss": 2.2278,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.0896,
203
+ "grad_norm": 0.9642391800880432,
204
+ "learning_rate": 4.0625000000000005e-05,
205
+ "loss": 2.1245,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.0928,
210
+ "grad_norm": 0.9148507118225098,
211
+ "learning_rate": 4.21875e-05,
212
+ "loss": 2.3712,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.096,
217
+ "grad_norm": 1.0361849069595337,
218
+ "learning_rate": 4.375e-05,
219
+ "loss": 2.1405,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.0992,
224
+ "grad_norm": 7.4032697677612305,
225
+ "learning_rate": 4.5312500000000004e-05,
226
+ "loss": 1.8717,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.1024,
231
+ "grad_norm": 1.011413812637329,
232
+ "learning_rate": 4.6875e-05,
233
+ "loss": 2.0154,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.1056,
238
+ "grad_norm": 1.0620793104171753,
239
+ "learning_rate": 4.8437500000000005e-05,
240
+ "loss": 2.2802,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.1088,
245
+ "grad_norm": 1.0524107217788696,
246
+ "learning_rate": 5e-05,
247
+ "loss": 2.1007,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.112,
252
+ "grad_norm": 0.9986498355865479,
253
+ "learning_rate": 4.999843759868819e-05,
254
+ "loss": 2.0176,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.1152,
259
+ "grad_norm": 1.047672986984253,
260
+ "learning_rate": 4.9993750590040575e-05,
261
+ "loss": 2.3632,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.1184,
266
+ "grad_norm": 0.9666229486465454,
267
+ "learning_rate": 4.998593955989626e-05,
268
+ "loss": 2.0895,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.1216,
273
+ "grad_norm": 1.1995681524276733,
274
+ "learning_rate": 4.9975005484572305e-05,
275
+ "loss": 1.9112,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.1248,
280
+ "grad_norm": 3.1392664909362793,
281
+ "learning_rate": 4.996094973074183e-05,
282
+ "loss": 2.0765,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.128,
287
+ "grad_norm": 1.1716688871383667,
288
+ "learning_rate": 4.994377405526308e-05,
289
+ "loss": 1.7757,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.1312,
294
+ "grad_norm": 0.9636698365211487,
295
+ "learning_rate": 4.992348060495989e-05,
296
+ "loss": 2.1896,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.1344,
301
+ "grad_norm": 0.9387962222099304,
302
+ "learning_rate": 4.990007191635334e-05,
303
+ "loss": 2.1875,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.1376,
308
+ "grad_norm": 0.918551504611969,
309
+ "learning_rate": 4.987355091534468e-05,
310
+ "loss": 2.1049,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.1408,
315
+ "grad_norm": 0.9996175169944763,
316
+ "learning_rate": 4.9843920916849645e-05,
317
+ "loss": 2.4059,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.144,
322
+ "grad_norm": 0.9736499190330505,
323
+ "learning_rate": 4.981118562438414e-05,
324
+ "loss": 1.999,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.1472,
329
+ "grad_norm": 1.036577582359314,
330
+ "learning_rate": 4.9775349129601243e-05,
331
+ "loss": 2.0207,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.1504,
336
+ "grad_norm": 0.9663489460945129,
337
+ "learning_rate": 4.973641591177991e-05,
338
+ "loss": 1.8309,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.1536,
343
+ "grad_norm": 0.9678478837013245,
344
+ "learning_rate": 4.969439083726496e-05,
345
+ "loss": 1.8601,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.1568,
350
+ "grad_norm": 1.1323456764221191,
351
+ "learning_rate": 4.964927915885893e-05,
352
+ "loss": 1.9505,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.16,
357
+ "grad_norm": 0.8682395219802856,
358
+ "learning_rate": 4.960108651516545e-05,
359
+ "loss": 1.7868,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.1632,
364
+ "grad_norm": 0.9288162589073181,
365
+ "learning_rate": 4.954981892988451e-05,
366
+ "loss": 2.1843,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.1664,
371
+ "grad_norm": 1.0266203880310059,
372
+ "learning_rate": 4.949548281105951e-05,
373
+ "loss": 2.3133,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.1696,
378
+ "grad_norm": 0.9135573506355286,
379
+ "learning_rate": 4.943808495027631e-05,
380
+ "loss": 2.1877,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.1728,
385
+ "grad_norm": 0.942903995513916,
386
+ "learning_rate": 4.937763252181434e-05,
387
+ "loss": 1.788,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.176,
392
+ "grad_norm": 0.918860137462616,
393
+ "learning_rate": 4.93141330817499e-05,
394
+ "loss": 2.2997,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.1792,
399
+ "grad_norm": 1.0075480937957764,
400
+ "learning_rate": 4.924759456701167e-05,
401
+ "loss": 2.2172,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.1824,
406
+ "grad_norm": 0.8399456143379211,
407
+ "learning_rate": 4.917802529438864e-05,
408
+ "loss": 1.6652,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.1856,
413
+ "grad_norm": 0.8925999402999878,
414
+ "learning_rate": 4.910543395949067e-05,
415
+ "loss": 1.8684,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.1888,
420
+ "grad_norm": 0.8900786638259888,
421
+ "learning_rate": 4.9029829635661475e-05,
422
+ "loss": 2.1491,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.192,
427
+ "grad_norm": 0.9098831415176392,
428
+ "learning_rate": 4.895122177284465e-05,
429
+ "loss": 1.9692,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.1952,
434
+ "grad_norm": 0.9300256371498108,
435
+ "learning_rate": 4.8869620196402436e-05,
436
+ "loss": 2.1417,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.1984,
441
+ "grad_norm": 0.8800130486488342,
442
+ "learning_rate": 4.878503510588765e-05,
443
+ "loss": 2.1419,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.2016,
448
+ "grad_norm": 0.869717538356781,
449
+ "learning_rate": 4.8697477073768766e-05,
450
+ "loss": 2.0039,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.2048,
455
+ "grad_norm": 1.0832667350769043,
456
+ "learning_rate": 4.8606957044108556e-05,
457
+ "loss": 1.9359,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.208,
462
+ "grad_norm": 0.8442544341087341,
463
+ "learning_rate": 4.851348633119606e-05,
464
+ "loss": 1.771,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.2112,
469
+ "grad_norm": 0.8307965397834778,
470
+ "learning_rate": 4.8417076618132426e-05,
471
+ "loss": 1.7329,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.2144,
476
+ "grad_norm": 0.8500248789787292,
477
+ "learning_rate": 4.8317739955370636e-05,
478
+ "loss": 1.927,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.2176,
483
+ "grad_norm": 0.8779441714286804,
484
+ "learning_rate": 4.821548875920927e-05,
485
+ "loss": 1.8811,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.2208,
490
+ "grad_norm": 0.9491339325904846,
491
+ "learning_rate": 4.811033581024056e-05,
492
+ "loss": 2.0995,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.224,
497
+ "grad_norm": 0.9209153056144714,
498
+ "learning_rate": 4.800229425175294e-05,
499
+ "loss": 2.0308,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.2272,
504
+ "grad_norm": 0.9706084132194519,
505
+ "learning_rate": 4.7891377588088223e-05,
506
+ "loss": 2.1603,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.2304,
511
+ "grad_norm": 0.8401190638542175,
512
+ "learning_rate": 4.777759968295369e-05,
513
+ "loss": 1.8921,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.2336,
518
+ "grad_norm": 1.7388620376586914,
519
+ "learning_rate": 4.766097475768919e-05,
520
+ "loss": 1.9469,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.2368,
525
+ "grad_norm": 0.8813150525093079,
526
+ "learning_rate": 4.754151738948962e-05,
527
+ "loss": 1.8235,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.24,
532
+ "grad_norm": 0.8916892409324646,
533
+ "learning_rate": 4.741924250958289e-05,
534
+ "loss": 1.9513,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.2432,
539
+ "grad_norm": 0.8717350959777832,
540
+ "learning_rate": 4.729416540136361e-05,
541
+ "loss": 1.9231,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.2464,
546
+ "grad_norm": 0.9412696957588196,
547
+ "learning_rate": 4.7166301698482815e-05,
548
+ "loss": 2.099,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.2496,
553
+ "grad_norm": 0.9612340331077576,
554
+ "learning_rate": 4.703566738289389e-05,
555
+ "loss": 2.059,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.2528,
560
+ "grad_norm": 1.0139132738113403,
561
+ "learning_rate": 4.69022787828549e-05,
562
+ "loss": 1.6535,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.256,
567
+ "grad_norm": 0.9509197473526001,
568
+ "learning_rate": 4.676615257088776e-05,
569
+ "loss": 2.1214,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.2592,
574
+ "grad_norm": 0.8892962336540222,
575
+ "learning_rate": 4.662730576169423e-05,
576
+ "loss": 2.1229,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.2624,
581
+ "grad_norm": 0.8373662829399109,
582
+ "learning_rate": 4.6485755710029256e-05,
583
+ "loss": 1.8558,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.2656,
588
+ "grad_norm": 0.8412055373191833,
589
+ "learning_rate": 4.6341520108531746e-05,
590
+ "loss": 1.7079,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.2688,
595
+ "grad_norm": 1.3762493133544922,
596
+ "learning_rate": 4.619461698551315e-05,
597
+ "loss": 1.8366,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.272,
602
+ "grad_norm": 0.9610726237297058,
603
+ "learning_rate": 4.604506470270403e-05,
604
+ "loss": 2.1713,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.2752,
609
+ "grad_norm": 0.846570611000061,
610
+ "learning_rate": 4.589288195295901e-05,
611
+ "loss": 1.8648,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.2784,
616
+ "grad_norm": 0.9135278463363647,
617
+ "learning_rate": 4.573808775792033e-05,
618
+ "loss": 2.182,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.2816,
623
+ "grad_norm": 0.8865692615509033,
624
+ "learning_rate": 4.5580701465640254e-05,
625
+ "loss": 1.9423,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.2848,
630
+ "grad_norm": 0.8762995004653931,
631
+ "learning_rate": 4.5420742748162734e-05,
632
+ "loss": 1.9934,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.288,
637
+ "grad_norm": 0.9263061881065369,
638
+ "learning_rate": 4.525823159906459e-05,
639
+ "loss": 2.2362,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.2912,
644
+ "grad_norm": 0.8523189425468445,
645
+ "learning_rate": 4.509318833095642e-05,
646
+ "loss": 2.1758,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.2944,
651
+ "grad_norm": 0.9841741919517517,
652
+ "learning_rate": 4.492563357294369e-05,
653
+ "loss": 2.0549,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.2976,
658
+ "grad_norm": 0.9290546178817749,
659
+ "learning_rate": 4.475558826804833e-05,
660
+ "loss": 1.8732,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.3008,
665
+ "grad_norm": 0.8647733926773071,
666
+ "learning_rate": 4.458307367059092e-05,
667
+ "loss": 2.0057,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.304,
672
+ "grad_norm": 0.9161149859428406,
673
+ "learning_rate": 4.440811134353412e-05,
674
+ "loss": 1.7013,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.3072,
679
+ "grad_norm": 0.8401817083358765,
680
+ "learning_rate": 4.42307231557875e-05,
681
+ "loss": 2.0538,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.3104,
686
+ "grad_norm": 1.011531114578247,
687
+ "learning_rate": 4.4050931279474015e-05,
688
+ "loss": 1.998,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.3136,
693
+ "grad_norm": 0.8913917541503906,
694
+ "learning_rate": 4.386875818715874e-05,
695
+ "loss": 1.9491,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.3168,
700
+ "grad_norm": 0.9900378584861755,
701
+ "learning_rate": 4.368422664903997e-05,
702
+ "loss": 1.8276,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.32,
707
+ "grad_norm": 0.8170567750930786,
708
+ "learning_rate": 4.349735973010305e-05,
709
+ "loss": 1.8383,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.3232,
714
+ "grad_norm": 0.8767079710960388,
715
+ "learning_rate": 4.330818078723755e-05,
716
+ "loss": 1.8861,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.3264,
721
+ "grad_norm": 0.9571582078933716,
722
+ "learning_rate": 4.311671346631774e-05,
723
+ "loss": 1.8612,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.3296,
728
+ "grad_norm": 0.9190142154693604,
729
+ "learning_rate": 4.292298169924709e-05,
730
+ "loss": 2.1069,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.3328,
735
+ "grad_norm": 0.9096384644508362,
736
+ "learning_rate": 4.272700970096696e-05,
737
+ "loss": 2.0704,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.336,
742
+ "grad_norm": 0.929742693901062,
743
+ "learning_rate": 4.252882196642992e-05,
744
+ "loss": 1.8269,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.3392,
749
+ "grad_norm": 0.8830273747444153,
750
+ "learning_rate": 4.23284432675381e-05,
751
+ "loss": 1.8447,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.3424,
756
+ "grad_norm": 0.866507887840271,
757
+ "learning_rate": 4.212589865004684e-05,
758
+ "loss": 2.2203,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.3456,
763
+ "grad_norm": 0.860091507434845,
764
+ "learning_rate": 4.192121343043424e-05,
765
+ "loss": 2.0754,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.3488,
770
+ "grad_norm": 0.9852222204208374,
771
+ "learning_rate": 4.1714413192736754e-05,
772
+ "loss": 1.7543,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.352,
777
+ "grad_norm": 0.8804312944412231,
778
+ "learning_rate": 4.150552378535137e-05,
779
+ "loss": 2.0036,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.3552,
784
+ "grad_norm": 0.7997055649757385,
785
+ "learning_rate": 4.1294571317804854e-05,
786
+ "loss": 1.6802,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.3584,
791
+ "grad_norm": 0.9458661079406738,
792
+ "learning_rate": 4.108158215749014e-05,
793
+ "loss": 2.1944,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.3616,
798
+ "grad_norm": 0.9290521144866943,
799
+ "learning_rate": 4.0866582926370725e-05,
800
+ "loss": 1.9413,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.3648,
805
+ "grad_norm": 0.9188751578330994,
806
+ "learning_rate": 4.064960049765304e-05,
807
+ "loss": 2.1782,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.368,
812
+ "grad_norm": 0.9197388887405396,
813
+ "learning_rate": 4.043066199242762e-05,
814
+ "loss": 2.301,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.3712,
819
+ "grad_norm": 0.8998375535011292,
820
+ "learning_rate": 4.020979477627907e-05,
821
+ "loss": 1.8035,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.3744,
826
+ "grad_norm": 0.8178901672363281,
827
+ "learning_rate": 3.998702645586565e-05,
828
+ "loss": 1.8764,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.3776,
833
+ "grad_norm": 0.9451196789741516,
834
+ "learning_rate": 3.976238487546864e-05,
835
+ "loss": 1.8488,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.3808,
840
+ "grad_norm": 0.8145877718925476,
841
+ "learning_rate": 3.953589811351204e-05,
842
+ "loss": 1.8894,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.384,
847
+ "grad_norm": 0.8082287311553955,
848
+ "learning_rate": 3.930759447905298e-05,
849
+ "loss": 1.7236,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.3872,
854
+ "grad_norm": 1.0476171970367432,
855
+ "learning_rate": 3.907750250824327e-05,
856
+ "loss": 2.1334,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.3904,
861
+ "grad_norm": 0.9171006679534912,
862
+ "learning_rate": 3.884565096076269e-05,
863
+ "loss": 1.7087,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.3936,
868
+ "grad_norm": 0.9148180484771729,
869
+ "learning_rate": 3.861206881622419e-05,
870
+ "loss": 2.1576,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.3968,
875
+ "grad_norm": 0.8305053114891052,
876
+ "learning_rate": 3.837678527055168e-05,
877
+ "loss": 1.5619,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.4,
882
+ "grad_norm": 0.8816688060760498,
883
+ "learning_rate": 3.813982973233083e-05,
884
+ "loss": 1.7811,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.4032,
889
+ "grad_norm": 0.833396315574646,
890
+ "learning_rate": 3.7901231819133105e-05,
891
+ "loss": 1.9271,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.4064,
896
+ "grad_norm": 0.9301218390464783,
897
+ "learning_rate": 3.766102135381393e-05,
898
+ "loss": 2.1721,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.4096,
903
+ "grad_norm": 0.8964502215385437,
904
+ "learning_rate": 3.741922836078499e-05,
905
+ "loss": 1.7697,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.4128,
910
+ "grad_norm": 0.919535219669342,
911
+ "learning_rate": 3.717588306226143e-05,
912
+ "loss": 1.9075,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.416,
917
+ "grad_norm": 0.9279409646987915,
918
+ "learning_rate": 3.693101587448436e-05,
919
+ "loss": 1.8996,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.4192,
924
+ "grad_norm": 0.8635279536247253,
925
+ "learning_rate": 3.6684657403919005e-05,
926
+ "loss": 1.8244,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.4224,
931
+ "grad_norm": 0.913209855556488,
932
+ "learning_rate": 3.6436838443429175e-05,
933
+ "loss": 2.0287,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.4256,
938
+ "grad_norm": 0.8230111002922058,
939
+ "learning_rate": 3.618758996842839e-05,
940
+ "loss": 1.8636,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.4288,
945
+ "grad_norm": 0.8902285099029541,
946
+ "learning_rate": 3.5936943133008183e-05,
947
+ "loss": 2.3189,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.432,
952
+ "grad_norm": 0.8231277465820312,
953
+ "learning_rate": 3.568492926604412e-05,
954
+ "loss": 1.7345,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.4352,
959
+ "grad_norm": 0.82820063829422,
960
+ "learning_rate": 3.5431579867279905e-05,
961
+ "loss": 1.8564,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.4384,
966
+ "grad_norm": 0.8306258320808411,
967
+ "learning_rate": 3.517692660339018e-05,
968
+ "loss": 1.8671,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.4416,
973
+ "grad_norm": 0.8603615760803223,
974
+ "learning_rate": 3.492100130402242e-05,
975
+ "loss": 1.737,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.4448,
980
+ "grad_norm": 0.8179602026939392,
981
+ "learning_rate": 3.4663835957818515e-05,
982
+ "loss": 1.8263,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.448,
987
+ "grad_norm": 0.8565822839736938,
988
+ "learning_rate": 3.440546270841639e-05,
989
+ "loss": 1.8216,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.4512,
994
+ "grad_norm": 0.9373151659965515,
995
+ "learning_rate": 3.414591385043237e-05,
996
+ "loss": 2.236,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.4544,
1001
+ "grad_norm": 0.8852721452713013,
1002
+ "learning_rate": 3.3885221825424537e-05,
1003
+ "loss": 1.7058,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.4576,
1008
+ "grad_norm": 0.8958799839019775,
1009
+ "learning_rate": 3.362341921783784e-05,
1010
+ "loss": 2.0029,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.4608,
1015
+ "grad_norm": 0.9146959185600281,
1016
+ "learning_rate": 3.336053875093128e-05,
1017
+ "loss": 1.9745,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.464,
1022
+ "grad_norm": 0.8560377359390259,
1023
+ "learning_rate": 3.309661328268776e-05,
1024
+ "loss": 1.939,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.4672,
1029
+ "grad_norm": 0.9292604327201843,
1030
+ "learning_rate": 3.283167580170712e-05,
1031
+ "loss": 2.1731,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.4704,
1036
+ "grad_norm": 0.8372029066085815,
1037
+ "learning_rate": 3.256575942308278e-05,
1038
+ "loss": 1.7536,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.4736,
1043
+ "grad_norm": 1.0057106018066406,
1044
+ "learning_rate": 3.229889738426264e-05,
1045
+ "loss": 2.0545,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.4768,
1050
+ "grad_norm": 0.905636191368103,
1051
+ "learning_rate": 3.203112304089466e-05,
1052
+ "loss": 2.0688,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.48,
1057
+ "grad_norm": 0.9915895462036133,
1058
+ "learning_rate": 3.176246986265767e-05,
1059
+ "loss": 1.7727,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.4832,
1064
+ "grad_norm": 0.8286227583885193,
1065
+ "learning_rate": 3.149297142907792e-05,
1066
+ "loss": 1.9014,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.4864,
1071
+ "grad_norm": 0.8335422873497009,
1072
+ "learning_rate": 3.122266142533191e-05,
1073
+ "loss": 1.8484,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.4896,
1078
+ "grad_norm": 0.8963138461112976,
1079
+ "learning_rate": 3.095157363803598e-05,
1080
+ "loss": 2.042,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.4928,
1085
+ "grad_norm": 0.9721676707267761,
1086
+ "learning_rate": 3.06797419510233e-05,
1087
+ "loss": 1.7216,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.496,
1092
+ "grad_norm": 0.927716076374054,
1093
+ "learning_rate": 3.0407200341108617e-05,
1094
+ "loss": 1.948,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.4992,
1099
+ "grad_norm": 0.830467164516449,
1100
+ "learning_rate": 3.013398287384144e-05,
1101
+ "loss": 1.8576,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.5024,
1106
+ "grad_norm": 0.9040769338607788,
1107
+ "learning_rate": 2.986012369924811e-05,
1108
+ "loss": 1.8908,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.5056,
1113
+ "grad_norm": 0.8086222410202026,
1114
+ "learning_rate": 2.9585657047563315e-05,
1115
+ "loss": 1.868,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.5088,
1120
+ "grad_norm": 0.8116671442985535,
1121
+ "learning_rate": 2.931061722495159e-05,
1122
+ "loss": 1.7886,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.512,
1127
+ "grad_norm": 0.9567749500274658,
1128
+ "learning_rate": 2.9035038609219306e-05,
1129
+ "loss": 1.853,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.5152,
1134
+ "grad_norm": 0.9087838530540466,
1135
+ "learning_rate": 2.875895564551772e-05,
1136
+ "loss": 1.9346,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.5184,
1141
+ "grad_norm": 1.079892873764038,
1142
+ "learning_rate": 2.8482402842037614e-05,
1143
+ "loss": 1.5922,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.5216,
1148
+ "grad_norm": 0.8078391551971436,
1149
+ "learning_rate": 2.8205414765696003e-05,
1150
+ "loss": 1.6757,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.5248,
1155
+ "grad_norm": 0.9625094532966614,
1156
+ "learning_rate": 2.792802603781562e-05,
1157
+ "loss": 2.0973,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.528,
1162
+ "grad_norm": 0.8933418393135071,
1163
+ "learning_rate": 2.7650271329797427e-05,
1164
+ "loss": 1.9035,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.5312,
1169
+ "grad_norm": 0.972737193107605,
1170
+ "learning_rate": 2.737218535878705e-05,
1171
+ "loss": 1.694,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.5344,
1176
+ "grad_norm": 0.8630124926567078,
1177
+ "learning_rate": 2.7093802883335357e-05,
1178
+ "loss": 1.9106,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.5376,
1183
+ "grad_norm": 1.0283786058425903,
1184
+ "learning_rate": 2.6815158699053932e-05,
1185
+ "loss": 2.0379,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.5408,
1190
+ "grad_norm": 0.8262351751327515,
1191
+ "learning_rate": 2.6536287634265918e-05,
1192
+ "loss": 1.7445,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.544,
1197
+ "grad_norm": 0.940129816532135,
1198
+ "learning_rate": 2.6257224545652688e-05,
1199
+ "loss": 2.1189,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.5472,
1204
+ "grad_norm": 0.9087008833885193,
1205
+ "learning_rate": 2.5978004313897104e-05,
1206
+ "loss": 1.9498,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.5504,
1211
+ "grad_norm": 0.8524187207221985,
1212
+ "learning_rate": 2.569866183932368e-05,
1213
+ "loss": 1.9588,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.5536,
1218
+ "grad_norm": 0.8133301734924316,
1219
+ "learning_rate": 2.5419232037536316e-05,
1220
+ "loss": 1.8297,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.5568,
1225
+ "grad_norm": 0.8447262644767761,
1226
+ "learning_rate": 2.5139749835054123e-05,
1227
+ "loss": 1.7685,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.56,
1232
+ "grad_norm": 0.8986214995384216,
1233
+ "learning_rate": 2.4860250164945876e-05,
1234
+ "loss": 1.7743,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.5632,
1239
+ "grad_norm": 0.9351289868354797,
1240
+ "learning_rate": 2.4580767962463687e-05,
1241
+ "loss": 1.8997,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.5664,
1246
+ "grad_norm": 0.9037435054779053,
1247
+ "learning_rate": 2.4301338160676324e-05,
1248
+ "loss": 1.9691,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.5696,
1253
+ "grad_norm": 0.849233865737915,
1254
+ "learning_rate": 2.40219956861029e-05,
1255
+ "loss": 1.8385,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.5728,
1260
+ "grad_norm": 0.9789981245994568,
1261
+ "learning_rate": 2.374277545434732e-05,
1262
+ "loss": 1.8535,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 0.576,
1267
+ "grad_norm": 0.8241089582443237,
1268
+ "learning_rate": 2.346371236573409e-05,
1269
+ "loss": 1.6937,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 0.5792,
1274
+ "grad_norm": 0.8240427374839783,
1275
+ "learning_rate": 2.318484130094607e-05,
1276
+ "loss": 1.8915,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 0.5824,
1281
+ "grad_norm": 0.9362565875053406,
1282
+ "learning_rate": 2.2906197116664653e-05,
1283
+ "loss": 1.8763,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 0.5856,
1288
+ "grad_norm": 0.880988359451294,
1289
+ "learning_rate": 2.262781464121296e-05,
1290
+ "loss": 2.0785,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 0.5888,
1295
+ "grad_norm": 0.8171457648277283,
1296
+ "learning_rate": 2.2349728670202582e-05,
1297
+ "loss": 1.8087,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 0.592,
1302
+ "grad_norm": 0.9022923111915588,
1303
+ "learning_rate": 2.2071973962184384e-05,
1304
+ "loss": 1.9251,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 0.5952,
1309
+ "grad_norm": 0.8642033338546753,
1310
+ "learning_rate": 2.1794585234303993e-05,
1311
+ "loss": 1.7433,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 0.5984,
1316
+ "grad_norm": 0.9066776633262634,
1317
+ "learning_rate": 2.1517597157962392e-05,
1318
+ "loss": 1.7444,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 0.6016,
1323
+ "grad_norm": 1.0174524784088135,
1324
+ "learning_rate": 2.124104435448228e-05,
1325
+ "loss": 1.9772,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 0.6048,
1330
+ "grad_norm": 0.9552676677703857,
1331
+ "learning_rate": 2.0964961390780703e-05,
1332
+ "loss": 1.8762,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 0.608,
1337
+ "grad_norm": 0.9591497778892517,
1338
+ "learning_rate": 2.0689382775048418e-05,
1339
+ "loss": 1.9189,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 0.6112,
1344
+ "grad_norm": 0.858933687210083,
1345
+ "learning_rate": 2.0414342952436694e-05,
1346
+ "loss": 1.8193,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 0.6144,
1351
+ "grad_norm": 0.8183876872062683,
1352
+ "learning_rate": 2.0139876300751904e-05,
1353
+ "loss": 1.6413,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 0.6176,
1358
+ "grad_norm": 0.8995866775512695,
1359
+ "learning_rate": 1.9866017126158574e-05,
1360
+ "loss": 2.0298,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 0.6208,
1365
+ "grad_norm": 0.8391925692558289,
1366
+ "learning_rate": 1.9592799658891385e-05,
1367
+ "loss": 1.8856,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 0.624,
1372
+ "grad_norm": 0.8501824736595154,
1373
+ "learning_rate": 1.9320258048976702e-05,
1374
+ "loss": 1.8058,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 0.6272,
1379
+ "grad_norm": 0.8973059058189392,
1380
+ "learning_rate": 1.904842636196402e-05,
1381
+ "loss": 2.0181,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 0.6304,
1386
+ "grad_norm": 0.8554884195327759,
1387
+ "learning_rate": 1.8777338574668095e-05,
1388
+ "loss": 1.8791,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 0.6336,
1393
+ "grad_norm": 0.9751168489456177,
1394
+ "learning_rate": 1.850702857092208e-05,
1395
+ "loss": 2.1171,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 0.6368,
1400
+ "grad_norm": 0.8239455223083496,
1401
+ "learning_rate": 1.8237530137342335e-05,
1402
+ "loss": 1.9513,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 0.64,
1407
+ "grad_norm": 0.8867501020431519,
1408
+ "learning_rate": 1.796887695910535e-05,
1409
+ "loss": 2.1136,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 0.6432,
1414
+ "grad_norm": 0.8486935496330261,
1415
+ "learning_rate": 1.7701102615737368e-05,
1416
+ "loss": 1.9146,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 0.6464,
1421
+ "grad_norm": 0.8988845348358154,
1422
+ "learning_rate": 1.7434240576917226e-05,
1423
+ "loss": 1.997,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 0.6496,
1428
+ "grad_norm": 0.8450900912284851,
1429
+ "learning_rate": 1.7168324198292888e-05,
1430
+ "loss": 1.8575,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 0.6528,
1435
+ "grad_norm": 0.9029667377471924,
1436
+ "learning_rate": 1.6903386717312236e-05,
1437
+ "loss": 1.9964,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 0.656,
1442
+ "grad_norm": 0.8760489821434021,
1443
+ "learning_rate": 1.6639461249068726e-05,
1444
+ "loss": 2.1632,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 0.6592,
1449
+ "grad_norm": 0.8516858816146851,
1450
+ "learning_rate": 1.637658078216217e-05,
1451
+ "loss": 1.8699,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 0.6624,
1456
+ "grad_norm": 0.8790733814239502,
1457
+ "learning_rate": 1.6114778174575473e-05,
1458
+ "loss": 1.6239,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 0.6656,
1463
+ "grad_norm": 0.9619203805923462,
1464
+ "learning_rate": 1.585408614956763e-05,
1465
+ "loss": 2.3154,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 0.6688,
1470
+ "grad_norm": 0.8987338542938232,
1471
+ "learning_rate": 1.559453729158361e-05,
1472
+ "loss": 1.7751,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 0.672,
1477
+ "grad_norm": 0.8577209711074829,
1478
+ "learning_rate": 1.5336164042181494e-05,
1479
+ "loss": 1.8087,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 0.6752,
1484
+ "grad_norm": 0.8519135117530823,
1485
+ "learning_rate": 1.5078998695977586e-05,
1486
+ "loss": 1.8299,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 0.6784,
1491
+ "grad_norm": 0.9367295503616333,
1492
+ "learning_rate": 1.482307339660983e-05,
1493
+ "loss": 2.177,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 0.6816,
1498
+ "grad_norm": 0.9398857951164246,
1499
+ "learning_rate": 1.4568420132720106e-05,
1500
+ "loss": 2.1118,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 0.6848,
1505
+ "grad_norm": 0.8866623640060425,
1506
+ "learning_rate": 1.4315070733955888e-05,
1507
+ "loss": 2.0044,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 0.688,
1512
+ "grad_norm": 0.9234758615493774,
1513
+ "learning_rate": 1.4063056866991826e-05,
1514
+ "loss": 1.9386,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 0.6912,
1519
+ "grad_norm": 0.8017230033874512,
1520
+ "learning_rate": 1.381241003157162e-05,
1521
+ "loss": 1.6357,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 0.6944,
1526
+ "grad_norm": 0.8828235864639282,
1527
+ "learning_rate": 1.3563161556570826e-05,
1528
+ "loss": 1.9193,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 0.6976,
1533
+ "grad_norm": 0.8700492978096008,
1534
+ "learning_rate": 1.3315342596080996e-05,
1535
+ "loss": 1.6987,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 0.7008,
1540
+ "grad_norm": 0.8625661134719849,
1541
+ "learning_rate": 1.3068984125515644e-05,
1542
+ "loss": 1.9628,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 0.704,
1547
+ "grad_norm": 0.8373908400535583,
1548
+ "learning_rate": 1.2824116937738579e-05,
1549
+ "loss": 1.664,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 0.7072,
1554
+ "grad_norm": 0.8767737150192261,
1555
+ "learning_rate": 1.2580771639215027e-05,
1556
+ "loss": 2.0254,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 0.7104,
1561
+ "grad_norm": 0.8676634430885315,
1562
+ "learning_rate": 1.2338978646186084e-05,
1563
+ "loss": 1.7836,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 0.7136,
1568
+ "grad_norm": 0.8328086733818054,
1569
+ "learning_rate": 1.2098768180866895e-05,
1570
+ "loss": 1.7046,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 0.7168,
1575
+ "grad_norm": 0.8744992613792419,
1576
+ "learning_rate": 1.1860170267669174e-05,
1577
+ "loss": 1.8117,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 0.72,
1582
+ "grad_norm": 0.7836005687713623,
1583
+ "learning_rate": 1.1623214729448317e-05,
1584
+ "loss": 1.7427,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 0.7232,
1589
+ "grad_norm": 0.7778053283691406,
1590
+ "learning_rate": 1.1387931183775822e-05,
1591
+ "loss": 1.6208,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 0.7264,
1596
+ "grad_norm": 0.895233690738678,
1597
+ "learning_rate": 1.1154349039237322e-05,
1598
+ "loss": 1.834,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 0.7296,
1603
+ "grad_norm": 0.864975094795227,
1604
+ "learning_rate": 1.0922497491756734e-05,
1605
+ "loss": 1.7659,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 0.7328,
1610
+ "grad_norm": 0.9300910830497742,
1611
+ "learning_rate": 1.0692405520947028e-05,
1612
+ "loss": 2.0783,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 0.736,
1617
+ "grad_norm": 0.9012324810028076,
1618
+ "learning_rate": 1.0464101886487958e-05,
1619
+ "loss": 1.9243,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 0.7392,
1624
+ "grad_norm": 0.8135029673576355,
1625
+ "learning_rate": 1.0237615124531363e-05,
1626
+ "loss": 1.7498,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 0.7424,
1631
+ "grad_norm": 0.8468223214149475,
1632
+ "learning_rate": 1.0012973544134358e-05,
1633
+ "loss": 1.8409,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 0.7456,
1638
+ "grad_norm": 0.8117995262145996,
1639
+ "learning_rate": 9.79020522372093e-06,
1640
+ "loss": 1.7893,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 0.7488,
1645
+ "grad_norm": 0.8934926986694336,
1646
+ "learning_rate": 9.569338007572382e-06,
1647
+ "loss": 1.9382,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 0.752,
1652
+ "grad_norm": 0.8657869100570679,
1653
+ "learning_rate": 9.35039950234696e-06,
1654
+ "loss": 1.7477,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 0.7552,
1659
+ "grad_norm": 0.871850311756134,
1660
+ "learning_rate": 9.133417073629289e-06,
1661
+ "loss": 1.9922,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 0.7584,
1666
+ "grad_norm": 0.8558037877082825,
1667
+ "learning_rate": 8.918417842509867e-06,
1668
+ "loss": 1.8059,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 0.7616,
1673
+ "grad_norm": 0.8291991353034973,
1674
+ "learning_rate": 8.705428682195155e-06,
1675
+ "loss": 1.8627,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 0.7648,
1680
+ "grad_norm": 0.9084640741348267,
1681
+ "learning_rate": 8.494476214648626e-06,
1682
+ "loss": 1.9113,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 0.768,
1687
+ "grad_norm": 0.8608958125114441,
1688
+ "learning_rate": 8.285586807263254e-06,
1689
+ "loss": 1.937,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 0.7712,
1694
+ "grad_norm": 0.8367571830749512,
1695
+ "learning_rate": 8.078786569565763e-06,
1696
+ "loss": 1.7382,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 0.7744,
1701
+ "grad_norm": 0.9098989367485046,
1702
+ "learning_rate": 7.874101349953167e-06,
1703
+ "loss": 2.0156,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 0.7776,
1708
+ "grad_norm": 0.8325051069259644,
1709
+ "learning_rate": 7.671556732461905e-06,
1710
+ "loss": 1.6789,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 0.7808,
1715
+ "grad_norm": 0.855073869228363,
1716
+ "learning_rate": 7.471178033570081e-06,
1717
+ "loss": 2.0656,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 0.784,
1722
+ "grad_norm": 0.8020650148391724,
1723
+ "learning_rate": 7.272990299033045e-06,
1724
+ "loss": 1.6928,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 0.7872,
1729
+ "grad_norm": 0.980696439743042,
1730
+ "learning_rate": 7.077018300752916e-06,
1731
+ "loss": 1.8311,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 0.7904,
1736
+ "grad_norm": 0.8271718621253967,
1737
+ "learning_rate": 6.883286533682265e-06,
1738
+ "loss": 1.9569,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 0.7936,
1743
+ "grad_norm": 0.9465168118476868,
1744
+ "learning_rate": 6.691819212762454e-06,
1745
+ "loss": 2.1162,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 0.7968,
1750
+ "grad_norm": 0.878783643245697,
1751
+ "learning_rate": 6.502640269896953e-06,
1752
+ "loss": 1.7634,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 0.8,
1757
+ "grad_norm": 0.9123842120170593,
1758
+ "learning_rate": 6.3157733509600355e-06,
1759
+ "loss": 2.2862,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 0.8032,
1764
+ "grad_norm": 0.8306463956832886,
1765
+ "learning_rate": 6.1312418128412565e-06,
1766
+ "loss": 1.7149,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 0.8064,
1771
+ "grad_norm": 0.8042676448822021,
1772
+ "learning_rate": 5.949068720525991e-06,
1773
+ "loss": 1.5697,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 0.8096,
1778
+ "grad_norm": 0.8570838570594788,
1779
+ "learning_rate": 5.769276844212501e-06,
1780
+ "loss": 1.9575,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 0.8128,
1785
+ "grad_norm": 0.853945791721344,
1786
+ "learning_rate": 5.591888656465874e-06,
1787
+ "loss": 1.6021,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 0.816,
1792
+ "grad_norm": 0.7824327945709229,
1793
+ "learning_rate": 5.416926329409083e-06,
1794
+ "loss": 1.7469,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 0.8192,
1799
+ "grad_norm": 0.9162058234214783,
1800
+ "learning_rate": 5.244411731951671e-06,
1801
+ "loss": 1.9214,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 0.8224,
1806
+ "grad_norm": 0.8960239887237549,
1807
+ "learning_rate": 5.074366427056309e-06,
1808
+ "loss": 1.8902,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 0.8256,
1813
+ "grad_norm": 0.8540034294128418,
1814
+ "learning_rate": 4.90681166904359e-06,
1815
+ "loss": 1.7701,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 0.8288,
1820
+ "grad_norm": 0.8078952431678772,
1821
+ "learning_rate": 4.741768400935417e-06,
1822
+ "loss": 1.7476,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 0.832,
1827
+ "grad_norm": 0.8801387548446655,
1828
+ "learning_rate": 4.579257251837271e-06,
1829
+ "loss": 1.9394,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 0.8352,
1834
+ "grad_norm": 0.9091523885726929,
1835
+ "learning_rate": 4.419298534359759e-06,
1836
+ "loss": 1.9172,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 0.8384,
1841
+ "grad_norm": 0.86611407995224,
1842
+ "learning_rate": 4.261912242079674e-06,
1843
+ "loss": 1.7744,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 0.8416,
1848
+ "grad_norm": 0.8813964128494263,
1849
+ "learning_rate": 4.107118047040995e-06,
1850
+ "loss": 1.964,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 0.8448,
1855
+ "grad_norm": 1.0881954431533813,
1856
+ "learning_rate": 3.954935297295975e-06,
1857
+ "loss": 1.7736,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 0.848,
1862
+ "grad_norm": 0.8743950128555298,
1863
+ "learning_rate": 3.8053830144868547e-06,
1864
+ "loss": 1.9119,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 0.8512,
1869
+ "grad_norm": 0.8601691126823425,
1870
+ "learning_rate": 3.6584798914682582e-06,
1871
+ "loss": 1.8711,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 0.8544,
1876
+ "grad_norm": 0.884376585483551,
1877
+ "learning_rate": 3.514244289970753e-06,
1878
+ "loss": 2.1294,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 0.8576,
1883
+ "grad_norm": 0.9268573522567749,
1884
+ "learning_rate": 3.3726942383057763e-06,
1885
+ "loss": 2.061,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 0.8608,
1890
+ "grad_norm": 0.7765485644340515,
1891
+ "learning_rate": 3.233847429112244e-06,
1892
+ "loss": 1.5819,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 0.864,
1897
+ "grad_norm": 0.8231096267700195,
1898
+ "learning_rate": 3.0977212171451e-06,
1899
+ "loss": 1.8227,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 0.8672,
1904
+ "grad_norm": 0.8997424244880676,
1905
+ "learning_rate": 2.9643326171061165e-06,
1906
+ "loss": 1.6759,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 0.8704,
1911
+ "grad_norm": 0.8399364948272705,
1912
+ "learning_rate": 2.833698301517185e-06,
1913
+ "loss": 1.6793,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 0.8736,
1918
+ "grad_norm": 0.920159101486206,
1919
+ "learning_rate": 2.7058345986363974e-06,
1920
+ "loss": 2.0572,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 0.8768,
1925
+ "grad_norm": 0.9057918787002563,
1926
+ "learning_rate": 2.5807574904171155e-06,
1927
+ "loss": 2.2139,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 0.88,
1932
+ "grad_norm": 0.8899713158607483,
1933
+ "learning_rate": 2.4584826105103764e-06,
1934
+ "loss": 1.9027,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 0.8832,
1939
+ "grad_norm": 1.0192358493804932,
1940
+ "learning_rate": 2.3390252423108076e-06,
1941
+ "loss": 1.8376,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 0.8864,
1946
+ "grad_norm": 0.8623155951499939,
1947
+ "learning_rate": 2.222400317046308e-06,
1948
+ "loss": 1.4057,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 0.8896,
1953
+ "grad_norm": 0.9236856698989868,
1954
+ "learning_rate": 2.108622411911773e-06,
1955
+ "loss": 1.9201,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 0.8928,
1960
+ "grad_norm": 0.9156610369682312,
1961
+ "learning_rate": 1.997705748247067e-06,
1962
+ "loss": 2.0085,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 0.896,
1967
+ "grad_norm": 1.2603415250778198,
1968
+ "learning_rate": 1.8896641897594492e-06,
1969
+ "loss": 1.7741,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 0.8992,
1974
+ "grad_norm": 0.8280951380729675,
1975
+ "learning_rate": 1.78451124079074e-06,
1976
+ "loss": 1.8905,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 0.9024,
1981
+ "grad_norm": 0.8544325828552246,
1982
+ "learning_rate": 1.6822600446293636e-06,
1983
+ "loss": 1.9967,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 0.9056,
1988
+ "grad_norm": 0.9109524488449097,
1989
+ "learning_rate": 1.5829233818675766e-06,
1990
+ "loss": 1.73,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 0.9088,
1995
+ "grad_norm": 0.8589962720870972,
1996
+ "learning_rate": 1.486513668803946e-06,
1997
+ "loss": 1.827,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 0.912,
2002
+ "grad_norm": 0.8872967958450317,
2003
+ "learning_rate": 1.3930429558914494e-06,
2004
+ "loss": 1.6534,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 0.9152,
2009
+ "grad_norm": 0.8933804631233215,
2010
+ "learning_rate": 1.3025229262312366e-06,
2011
+ "loss": 1.9079,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 0.9184,
2016
+ "grad_norm": 0.8584591746330261,
2017
+ "learning_rate": 1.214964894112361e-06,
2018
+ "loss": 1.8498,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 0.9216,
2023
+ "grad_norm": 0.8858172297477722,
2024
+ "learning_rate": 1.1303798035975643e-06,
2025
+ "loss": 1.7681,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 0.9248,
2030
+ "grad_norm": 0.8581066131591797,
2031
+ "learning_rate": 1.0487782271553504e-06,
2032
+ "loss": 1.9958,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 0.928,
2037
+ "grad_norm": 0.8548694849014282,
2038
+ "learning_rate": 9.701703643385295e-07,
2039
+ "loss": 1.8107,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 0.9312,
2044
+ "grad_norm": 0.8163594603538513,
2045
+ "learning_rate": 8.94566040509337e-07,
2046
+ "loss": 1.8072,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 0.9344,
2051
+ "grad_norm": 0.9220604300498962,
2052
+ "learning_rate": 8.219747056113586e-07,
2053
+ "loss": 2.109,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 0.9376,
2058
+ "grad_norm": 0.8807504773139954,
2059
+ "learning_rate": 7.524054329883346e-07,
2060
+ "loss": 1.6955,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 0.9408,
2065
+ "grad_norm": 0.8602936863899231,
2066
+ "learning_rate": 6.858669182500971e-07,
2067
+ "loss": 1.849,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 0.944,
2072
+ "grad_norm": 0.8880540132522583,
2073
+ "learning_rate": 6.223674781856592e-07,
2074
+ "loss": 2.0819,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 0.9472,
2079
+ "grad_norm": 0.915898859500885,
2080
+ "learning_rate": 5.619150497236992e-07,
2081
+ "loss": 2.2103,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 0.9504,
2086
+ "grad_norm": 0.9282847046852112,
2087
+ "learning_rate": 5.045171889404954e-07,
2088
+ "loss": 2.1302,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 0.9536,
2093
+ "grad_norm": 0.801628053188324,
2094
+ "learning_rate": 4.501810701154907e-07,
2095
+ "loss": 1.8129,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 0.9568,
2100
+ "grad_norm": 0.8396210670471191,
2101
+ "learning_rate": 3.98913484834551e-07,
2102
+ "loss": 1.3778,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 0.96,
2107
+ "grad_norm": 0.8347736597061157,
2108
+ "learning_rate": 3.507208411410778e-07,
2109
+ "loss": 1.7383,
2110
+ "step": 300
2111
+ },
2112
+ {
2113
+ "epoch": 0.9632,
2114
+ "grad_norm": 0.876707136631012,
2115
+ "learning_rate": 3.0560916273504325e-07,
2116
+ "loss": 1.8849,
2117
+ "step": 301
2118
+ },
2119
+ {
2120
+ "epoch": 0.9664,
2121
+ "grad_norm": 0.9329042434692383,
2122
+ "learning_rate": 2.635840882200924e-07,
2123
+ "loss": 1.8339,
2124
+ "step": 302
2125
+ },
2126
+ {
2127
+ "epoch": 0.9696,
2128
+ "grad_norm": 0.8642157912254333,
2129
+ "learning_rate": 2.246508703987543e-07,
2130
+ "loss": 1.916,
2131
+ "step": 303
2132
+ },
2133
+ {
2134
+ "epoch": 0.9728,
2135
+ "grad_norm": 0.9208475351333618,
2136
+ "learning_rate": 1.8881437561586722e-07,
2137
+ "loss": 1.7845,
2138
+ "step": 304
2139
+ },
2140
+ {
2141
+ "epoch": 0.976,
2142
+ "grad_norm": 0.8702243566513062,
2143
+ "learning_rate": 1.5607908315035667e-07,
2144
+ "loss": 2.0131,
2145
+ "step": 305
2146
+ },
2147
+ {
2148
+ "epoch": 0.9792,
2149
+ "grad_norm": 0.879602313041687,
2150
+ "learning_rate": 1.264490846553279e-07,
2151
+ "loss": 1.9444,
2152
+ "step": 306
2153
+ },
2154
+ {
2155
+ "epoch": 0.9824,
2156
+ "grad_norm": 0.8321172595024109,
2157
+ "learning_rate": 9.992808364666373e-08,
2158
+ "loss": 1.7554,
2159
+ "step": 307
2160
+ },
2161
+ {
2162
+ "epoch": 0.9856,
2163
+ "grad_norm": 0.9140818119049072,
2164
+ "learning_rate": 7.651939504010885e-08,
2165
+ "loss": 1.9615,
2166
+ "step": 308
2167
+ },
2168
+ {
2169
+ "epoch": 0.9888,
2170
+ "grad_norm": 0.8076279163360596,
2171
+ "learning_rate": 5.622594473692067e-08,
2172
+ "loss": 1.6552,
2173
+ "step": 309
2174
+ },
2175
+ {
2176
+ "epoch": 0.992,
2177
+ "grad_norm": 0.8180491328239441,
2178
+ "learning_rate": 3.90502692581729e-08,
2179
+ "loss": 1.8337,
2180
+ "step": 310
2181
+ },
2182
+ {
2183
+ "epoch": 0.9952,
2184
+ "grad_norm": 0.919771671295166,
2185
+ "learning_rate": 2.4994515427695374e-08,
2186
+ "loss": 1.7055,
2187
+ "step": 311
2188
+ },
2189
+ {
2190
+ "epoch": 0.9984,
2191
+ "grad_norm": 0.8689696192741394,
2192
+ "learning_rate": 1.4060440103746964e-08,
2193
+ "loss": 1.8763,
2194
+ "step": 312
2195
+ },
2196
+ {
2197
+ "epoch": 1.0,
2198
+ "grad_norm": 1.3404301404953003,
2199
+ "learning_rate": 6.249409959421803e-09,
2200
+ "loss": 1.8715,
2201
+ "step": 313
2202
+ }
2203
+ ],
2204
+ "logging_steps": 1,
2205
+ "max_steps": 313,
2206
+ "num_input_tokens_seen": 0,
2207
+ "num_train_epochs": 1,
2208
+ "save_steps": 500,
2209
+ "stateful_callbacks": {
2210
+ "TrainerControl": {
2211
+ "args": {
2212
+ "should_epoch_stop": false,
2213
+ "should_evaluate": false,
2214
+ "should_log": false,
2215
+ "should_save": true,
2216
+ "should_training_stop": true
2217
+ },
2218
+ "attributes": {}
2219
+ }
2220
+ },
2221
+ "total_flos": 6.23639789568e+16,
2222
+ "train_batch_size": 2,
2223
+ "trial_name": null,
2224
+ "trial_params": null
2225
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae6eaa2db4ba0d1df24336f4972be0905cfff28b55da3a36af9fe7afac0d0535
3
+ size 6161