zhuangxialie
commited on
Model save
Browse files- README.md +57 -0
- all_results.json +8 -0
- generation_config.json +14 -0
- train_results.json +8 -0
- trainer_state.json +227 -0
README.md
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
model_name: Qwen-code-7B-SFT-5k
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
- trl
|
| 7 |
+
- sft
|
| 8 |
+
licence: license
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Model Card for Qwen-code-7B-SFT-5k
|
| 12 |
+
|
| 13 |
+
This model is a fine-tuned version of [None](https://huggingface.co/None).
|
| 14 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
| 15 |
+
|
| 16 |
+
## Quick start
|
| 17 |
+
|
| 18 |
+
```python
|
| 19 |
+
from transformers import pipeline
|
| 20 |
+
|
| 21 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
| 22 |
+
generator = pipeline("text-generation", model="ZhuangXialie/Qwen-code-7B-SFT-5k", device="cuda")
|
| 23 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
| 24 |
+
print(output["generated_text"])
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
## Training procedure
|
| 28 |
+
|
| 29 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/zhuangxialie-ubiquant-investment/huggingface/runs/tt1qu69x)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
This model was trained with SFT.
|
| 33 |
+
|
| 34 |
+
### Framework versions
|
| 35 |
+
|
| 36 |
+
- TRL: 0.16.0.dev0
|
| 37 |
+
- Transformers: 4.49.0
|
| 38 |
+
- Pytorch: 2.4.0
|
| 39 |
+
- Datasets: 3.5.0
|
| 40 |
+
- Tokenizers: 0.21.1
|
| 41 |
+
|
| 42 |
+
## Citations
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
Cite TRL as:
|
| 47 |
+
|
| 48 |
+
```bibtex
|
| 49 |
+
@misc{vonwerra2022trl,
|
| 50 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
| 51 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
| 52 |
+
year = 2020,
|
| 53 |
+
journal = {GitHub repository},
|
| 54 |
+
publisher = {GitHub},
|
| 55 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
| 56 |
+
}
|
| 57 |
+
```
|
all_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_flos": 55862298214400.0,
|
| 3 |
+
"train_loss": 0.25453417761058644,
|
| 4 |
+
"train_runtime": 699.0514,
|
| 5 |
+
"train_samples": 4958,
|
| 6 |
+
"train_samples_per_second": 2.666,
|
| 7 |
+
"train_steps_per_second": 0.166
|
| 8 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.1,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
+
"transformers_version": "4.49.0"
|
| 14 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_flos": 55862298214400.0,
|
| 3 |
+
"train_loss": 0.25453417761058644,
|
| 4 |
+
"train_runtime": 699.0514,
|
| 5 |
+
"train_samples": 4958,
|
| 6 |
+
"train_samples_per_second": 2.666,
|
| 7 |
+
"train_steps_per_second": 0.166
|
| 8 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 3.8813559322033897,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 116,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.1694915254237288,
|
| 13 |
+
"grad_norm": 1.030324124303403,
|
| 14 |
+
"learning_rate": 2.0833333333333336e-05,
|
| 15 |
+
"loss": 0.4959,
|
| 16 |
+
"mean_token_accuracy": 0.8713347434997558,
|
| 17 |
+
"step": 5
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.3389830508474576,
|
| 21 |
+
"grad_norm": 0.5717467306853743,
|
| 22 |
+
"learning_rate": 4.166666666666667e-05,
|
| 23 |
+
"loss": 0.4216,
|
| 24 |
+
"mean_token_accuracy": 0.8822458744049072,
|
| 25 |
+
"step": 10
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"epoch": 0.5084745762711864,
|
| 29 |
+
"grad_norm": 0.30670252885331056,
|
| 30 |
+
"learning_rate": 4.9907672546384545e-05,
|
| 31 |
+
"loss": 0.3837,
|
| 32 |
+
"mean_token_accuracy": 0.8890745401382446,
|
| 33 |
+
"step": 15
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"epoch": 0.6779661016949152,
|
| 37 |
+
"grad_norm": 0.28508850602109415,
|
| 38 |
+
"learning_rate": 4.9346190892086174e-05,
|
| 39 |
+
"loss": 0.3635,
|
| 40 |
+
"mean_token_accuracy": 0.8940897285938263,
|
| 41 |
+
"step": 20
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"epoch": 0.847457627118644,
|
| 45 |
+
"grad_norm": 0.231083779269082,
|
| 46 |
+
"learning_rate": 4.8287289481503954e-05,
|
| 47 |
+
"loss": 0.3489,
|
| 48 |
+
"mean_token_accuracy": 0.8982042372226715,
|
| 49 |
+
"step": 25
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"epoch": 1.0,
|
| 53 |
+
"grad_norm": 0.2246638901095726,
|
| 54 |
+
"learning_rate": 4.675507862678257e-05,
|
| 55 |
+
"loss": 0.346,
|
| 56 |
+
"mean_token_accuracy": 0.8966788053512573,
|
| 57 |
+
"step": 30
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"epoch": 1.1694915254237288,
|
| 61 |
+
"grad_norm": 0.22838220228380773,
|
| 62 |
+
"learning_rate": 4.478444550590631e-05,
|
| 63 |
+
"loss": 0.2887,
|
| 64 |
+
"mean_token_accuracy": 0.9111442804336548,
|
| 65 |
+
"step": 35
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 1.3389830508474576,
|
| 69 |
+
"grad_norm": 0.23878993019310235,
|
| 70 |
+
"learning_rate": 4.2420259810417894e-05,
|
| 71 |
+
"loss": 0.2754,
|
| 72 |
+
"mean_token_accuracy": 0.9148677706718444,
|
| 73 |
+
"step": 40
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 1.5084745762711864,
|
| 77 |
+
"grad_norm": 0.16810576615741815,
|
| 78 |
+
"learning_rate": 3.9716352099533276e-05,
|
| 79 |
+
"loss": 0.2806,
|
| 80 |
+
"mean_token_accuracy": 0.9128606796264649,
|
| 81 |
+
"step": 45
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"epoch": 1.6779661016949152,
|
| 85 |
+
"grad_norm": 0.2005840241516876,
|
| 86 |
+
"learning_rate": 3.6734288122687036e-05,
|
| 87 |
+
"loss": 0.2748,
|
| 88 |
+
"mean_token_accuracy": 0.9143766462802887,
|
| 89 |
+
"step": 50
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"epoch": 1.847457627118644,
|
| 93 |
+
"grad_norm": 0.19954679142899281,
|
| 94 |
+
"learning_rate": 3.354196701817348e-05,
|
| 95 |
+
"loss": 0.2685,
|
| 96 |
+
"mean_token_accuracy": 0.9158895432949066,
|
| 97 |
+
"step": 55
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"epoch": 2.0,
|
| 101 |
+
"grad_norm": 0.35183907693360755,
|
| 102 |
+
"learning_rate": 3.021207530574477e-05,
|
| 103 |
+
"loss": 0.2616,
|
| 104 |
+
"mean_token_accuracy": 0.9172095722622342,
|
| 105 |
+
"step": 60
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"epoch": 2.169491525423729,
|
| 109 |
+
"grad_norm": 0.22105077779359006,
|
| 110 |
+
"learning_rate": 2.6820431874480006e-05,
|
| 111 |
+
"loss": 0.2095,
|
| 112 |
+
"mean_token_accuracy": 0.9329459547996521,
|
| 113 |
+
"step": 65
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"epoch": 2.3389830508474576,
|
| 117 |
+
"grad_norm": 0.19846361542341748,
|
| 118 |
+
"learning_rate": 2.344426164918712e-05,
|
| 119 |
+
"loss": 0.2033,
|
| 120 |
+
"mean_token_accuracy": 0.9337680399417877,
|
| 121 |
+
"step": 70
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 2.5084745762711864,
|
| 125 |
+
"grad_norm": 0.18894701230706007,
|
| 126 |
+
"learning_rate": 2.0160437242530445e-05,
|
| 127 |
+
"loss": 0.1939,
|
| 128 |
+
"mean_token_accuracy": 0.937131541967392,
|
| 129 |
+
"step": 75
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 2.6779661016949152,
|
| 133 |
+
"grad_norm": 0.20211452980324235,
|
| 134 |
+
"learning_rate": 1.704372862901521e-05,
|
| 135 |
+
"loss": 0.1914,
|
| 136 |
+
"mean_token_accuracy": 0.9378842771053314,
|
| 137 |
+
"step": 80
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"epoch": 2.847457627118644,
|
| 141 |
+
"grad_norm": 0.1894485868510866,
|
| 142 |
+
"learning_rate": 1.4165100694309626e-05,
|
| 143 |
+
"loss": 0.1949,
|
| 144 |
+
"mean_token_accuracy": 0.9367973864078522,
|
| 145 |
+
"step": 85
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"epoch": 3.0,
|
| 149 |
+
"grad_norm": 0.2043299022821172,
|
| 150 |
+
"learning_rate": 1.1590097423302684e-05,
|
| 151 |
+
"loss": 0.1836,
|
| 152 |
+
"mean_token_accuracy": 0.9393455651071336,
|
| 153 |
+
"step": 90
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"epoch": 3.169491525423729,
|
| 157 |
+
"grad_norm": 0.1901039140832894,
|
| 158 |
+
"learning_rate": 9.377349517603714e-06,
|
| 159 |
+
"loss": 0.1444,
|
| 160 |
+
"mean_token_accuracy": 0.9531322956085205,
|
| 161 |
+
"step": 95
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"epoch": 3.3389830508474576,
|
| 165 |
+
"grad_norm": 0.17816548408646005,
|
| 166 |
+
"learning_rate": 7.57723942280278e-06,
|
| 167 |
+
"loss": 0.1399,
|
| 168 |
+
"mean_token_accuracy": 0.9542467951774597,
|
| 169 |
+
"step": 100
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"epoch": 3.5084745762711864,
|
| 173 |
+
"grad_norm": 0.202508229530206,
|
| 174 |
+
"learning_rate": 6.230754161720593e-06,
|
| 175 |
+
"loss": 0.1377,
|
| 176 |
+
"mean_token_accuracy": 0.9551035225391388,
|
| 177 |
+
"step": 105
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 3.6779661016949152,
|
| 181 |
+
"grad_norm": 0.18079082215089404,
|
| 182 |
+
"learning_rate": 5.368552093689271e-06,
|
| 183 |
+
"loss": 0.1365,
|
| 184 |
+
"mean_token_accuracy": 0.9550769627094269,
|
| 185 |
+
"step": 110
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 3.847457627118644,
|
| 189 |
+
"grad_norm": 0.18036470362534995,
|
| 190 |
+
"learning_rate": 5.010264848985499e-06,
|
| 191 |
+
"loss": 0.1337,
|
| 192 |
+
"mean_token_accuracy": 0.9559988558292389,
|
| 193 |
+
"step": 115
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"epoch": 3.8813559322033897,
|
| 197 |
+
"mean_token_accuracy": 0.9553212523460388,
|
| 198 |
+
"step": 116,
|
| 199 |
+
"total_flos": 55862298214400.0,
|
| 200 |
+
"train_loss": 0.25453417761058644,
|
| 201 |
+
"train_runtime": 699.0514,
|
| 202 |
+
"train_samples_per_second": 2.666,
|
| 203 |
+
"train_steps_per_second": 0.166
|
| 204 |
+
}
|
| 205 |
+
],
|
| 206 |
+
"logging_steps": 5,
|
| 207 |
+
"max_steps": 116,
|
| 208 |
+
"num_input_tokens_seen": 0,
|
| 209 |
+
"num_train_epochs": 4,
|
| 210 |
+
"save_steps": 2000,
|
| 211 |
+
"stateful_callbacks": {
|
| 212 |
+
"TrainerControl": {
|
| 213 |
+
"args": {
|
| 214 |
+
"should_epoch_stop": false,
|
| 215 |
+
"should_evaluate": false,
|
| 216 |
+
"should_log": false,
|
| 217 |
+
"should_save": true,
|
| 218 |
+
"should_training_stop": true
|
| 219 |
+
},
|
| 220 |
+
"attributes": {}
|
| 221 |
+
}
|
| 222 |
+
},
|
| 223 |
+
"total_flos": 55862298214400.0,
|
| 224 |
+
"train_batch_size": 1,
|
| 225 |
+
"trial_name": null,
|
| 226 |
+
"trial_params": null
|
| 227 |
+
}
|