Update README.md
Browse files
README.md
CHANGED
|
@@ -15,86 +15,88 @@ tags:
|
|
| 15 |
- Video
|
| 16 |
- MQA
|
| 17 |
- multimodal
|
|
|
|
|
|
|
|
|
|
| 18 |
model-index:
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
---
|
| 92 |
|
| 93 |
# LLaVAction-7B
|
| 94 |
|
| 95 |
## Model Summary
|
| 96 |
-
The LLaVAction
|
| 97 |
-
|
| 98 |
This model supports at most 64 frames.
|
| 99 |
|
| 100 |
- **Project Page**: [https://mmathislab.github.io/llavaction/](https://mmathislab.github.io/llavaction/)
|
|
@@ -103,20 +105,18 @@ This model supports at most 64 frames.
|
|
| 103 |
- **Point of Contact**: [Mackenzie Mathis](https://people.epfl.ch/mackenzie.mathis)
|
| 104 |
- **Languages**: English
|
| 105 |
-
|
| 106 |
-
##
|
| 107 |
|
| 108 |
### Intended use
|
| 109 |
The model was trained on EPIC-KITCHENS-100-MQA and LLaVA-Video-178K (link). It has improved capability on understanding human egocentric actions from videos.
|
| 110 |
|
| 111 |
|
| 112 |
-
**Feel free to share your generations in the Community tab!**
|
| 113 |
-
|
| 114 |
-
|
| 115 |
### Generation
|
| 116 |
We provide the simple generation process for using our model. For more details, you could refer to Github.
|
| 117 |
|
| 118 |
```python
|
| 119 |
!pip install llavaction
|
|
|
|
| 120 |
from llavaction.model.builder import load_pretrained_model
|
| 121 |
from llavaction.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
|
| 122 |
from llavaction.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
|
|
@@ -130,6 +130,14 @@ import warnings
|
|
| 130 |
from decord import VideoReader, cpu
|
| 131 |
import numpy as np
|
| 132 |
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
def load_video(video_path, max_frames_num,fps=1,force_sample=False):
|
| 134 |
if max_frames_num == 0:
|
| 135 |
return np.zeros((1, 336, 336, 3))
|
|
@@ -146,27 +154,27 @@ def load_video(video_path, max_frames_num,fps=1,force_sample=False):
|
|
| 146 |
spare_frames = vr.get_batch(frame_idx).asnumpy()
|
| 147 |
# import pdb;pdb.set_trace()
|
| 148 |
return spare_frames,frame_time,video_time
|
|
|
|
| 149 |
pretrained = "MLAdaptiveIntelligence/LLaVAction-7B"
|
| 150 |
model_name = "llava_qwen"
|
| 151 |
device = "cuda"
|
| 152 |
device_map = "auto"
|
| 153 |
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args
|
| 154 |
model.eval()
|
| 155 |
-
video_path = "XXXX"
|
| 156 |
max_frames_num = 64
|
| 157 |
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
|
| 158 |
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().to(torch.bfloat16)
|
| 159 |
video = [video]
|
| 160 |
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
|
| 161 |
time_instruction = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. "
|
| 162 |
-
perspective_prompt = "You are seeing this video from egocentric view and you are the person. Your hands are sometimes interacting with objects. What action are you doing?"
|
| 163 |
-
task_prompt = "Describe in details what you see from the video frames."
|
| 164 |
question = DEFAULT_IMAGE_TOKEN + f"\n{time_instruction}\n{perspective_prompt} {task_prompt}"
|
|
|
|
| 165 |
conv = copy.deepcopy(conv_templates[conv_template])
|
| 166 |
conv.append_message(conv.roles[0], question)
|
| 167 |
conv.append_message(conv.roles[1], None)
|
| 168 |
prompt_question = conv.get_prompt()
|
| 169 |
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
|
|
|
|
| 170 |
cont = model.generate(
|
| 171 |
input_ids,
|
| 172 |
images=video,
|
|
@@ -182,6 +190,7 @@ print(text_outputs)
|
|
| 182 |
|
| 183 |
## Training
|
| 184 |
|
|
|
|
| 185 |
|
| 186 |
### Model
|
| 187 |
- **Architecture**: SO400M + Qwen2
|
|
|
|
| 15 |
- Video
|
| 16 |
- MQA
|
| 17 |
- multimodal
|
| 18 |
+
- VLM
|
| 19 |
+
- LLaVAction
|
| 20 |
+
- MLLMs
|
| 21 |
model-index:
|
| 22 |
+
- name: LLaVAction-7B
|
| 23 |
+
results:
|
| 24 |
+
- task:
|
| 25 |
+
type: multimodal
|
| 26 |
+
dataset:
|
| 27 |
+
name: EgoSchema
|
| 28 |
+
type: egoschema
|
| 29 |
+
metrics:
|
| 30 |
+
- type: accuracy
|
| 31 |
+
value: 59
|
| 32 |
+
name: accuracy
|
| 33 |
+
verified: true
|
| 34 |
+
- task:
|
| 35 |
+
type: multimodal
|
| 36 |
+
dataset:
|
| 37 |
+
name: MVBench
|
| 38 |
+
type: mvbench
|
| 39 |
+
metrics:
|
| 40 |
+
- type: accuracy
|
| 41 |
+
value: 61.1
|
| 42 |
+
name: accuracy
|
| 43 |
+
verified: true
|
| 44 |
+
- task:
|
| 45 |
+
type: multimodal
|
| 46 |
+
dataset:
|
| 47 |
+
name: NextQA
|
| 48 |
+
type: nextqa
|
| 49 |
+
metrics:
|
| 50 |
+
- type: accuracy
|
| 51 |
+
value: 82.8
|
| 52 |
+
name: accuracy
|
| 53 |
+
verified: true
|
| 54 |
+
- task:
|
| 55 |
+
type: multimodal
|
| 56 |
+
dataset:
|
| 57 |
+
name: PercepTest
|
| 58 |
+
type: percepTest
|
| 59 |
+
metrics:
|
| 60 |
+
- type: accuracy
|
| 61 |
+
value: 70.2
|
| 62 |
+
name: accuracy
|
| 63 |
+
verified: true
|
| 64 |
+
- task:
|
| 65 |
+
type: multimodal
|
| 66 |
+
dataset:
|
| 67 |
+
name: LongVideoBench
|
| 68 |
+
type: longvideobench
|
| 69 |
+
metrics:
|
| 70 |
+
- type: accuracy
|
| 71 |
+
value: 58.6
|
| 72 |
+
name: accuracy
|
| 73 |
+
verified: true
|
| 74 |
+
- task:
|
| 75 |
+
type: multimodal
|
| 76 |
+
dataset:
|
| 77 |
+
name: VideoMME
|
| 78 |
+
type: videomme
|
| 79 |
+
metrics:
|
| 80 |
+
- type: accuracy
|
| 81 |
+
value: 63.9
|
| 82 |
+
name: accuracy
|
| 83 |
+
verified: true
|
| 84 |
+
- task:
|
| 85 |
+
type: multimodal
|
| 86 |
+
dataset:
|
| 87 |
+
name: VideoMME (w-subs)
|
| 88 |
+
type: videomme
|
| 89 |
+
metrics:
|
| 90 |
+
- type: accuracy
|
| 91 |
+
value: 71.4
|
| 92 |
+
name: accuracy
|
| 93 |
+
verified: true
|
| 94 |
---
|
| 95 |
|
| 96 |
# LLaVAction-7B
|
| 97 |
|
| 98 |
## Model Summary
|
| 99 |
+
The LLaVAction-7B model is trained on EPIC-KITCHENS-100-MQA, based on Qwen2 language model with a context window of 32K tokens.
|
|
|
|
| 100 |
This model supports at most 64 frames.
|
| 101 |
|
| 102 |
- **Project Page**: [https://mmathislab.github.io/llavaction/](https://mmathislab.github.io/llavaction/)
|
|
|
|
| 105 |
- **Point of Contact**: [Mackenzie Mathis](https://people.epfl.ch/mackenzie.mathis)
|
| 106 |
- **Languages**: English
|
| 107 |
-
|
| 108 |
+
## Useage
|
| 109 |
|
| 110 |
### Intended use
|
| 111 |
The model was trained on EPIC-KITCHENS-100-MQA and LLaVA-Video-178K (link). It has improved capability on understanding human egocentric actions from videos.
|
| 112 |
|
| 113 |
|
|
|
|
|
|
|
|
|
|
| 114 |
### Generation
|
| 115 |
We provide the simple generation process for using our model. For more details, you could refer to Github.
|
| 116 |
|
| 117 |
```python
|
| 118 |
!pip install llavaction
|
| 119 |
+
|
| 120 |
from llavaction.model.builder import load_pretrained_model
|
| 121 |
from llavaction.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
|
| 122 |
from llavaction.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
|
|
|
|
| 130 |
from decord import VideoReader, cpu
|
| 131 |
import numpy as np
|
| 132 |
warnings.filterwarnings("ignore")
|
| 133 |
+
|
| 134 |
+
#Your video (it assumes an egocentric view point)
|
| 135 |
+
video_path = "XXXX"
|
| 136 |
+
|
| 137 |
+
#These are the prompts we trained with, but you can test others:
|
| 138 |
+
perspective_prompt = "You are seeing this video from egocentric view and you are the person. Your hands are sometimes interacting with objects. What action are you doing?"
|
| 139 |
+
task_prompt = "Describe in details what you see from the video frames."
|
| 140 |
+
|
| 141 |
def load_video(video_path, max_frames_num,fps=1,force_sample=False):
|
| 142 |
if max_frames_num == 0:
|
| 143 |
return np.zeros((1, 336, 336, 3))
|
|
|
|
| 154 |
spare_frames = vr.get_batch(frame_idx).asnumpy()
|
| 155 |
# import pdb;pdb.set_trace()
|
| 156 |
return spare_frames,frame_time,video_time
|
| 157 |
+
|
| 158 |
pretrained = "MLAdaptiveIntelligence/LLaVAction-7B"
|
| 159 |
model_name = "llava_qwen"
|
| 160 |
device = "cuda"
|
| 161 |
device_map = "auto"
|
| 162 |
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args
|
| 163 |
model.eval()
|
|
|
|
| 164 |
max_frames_num = 64
|
| 165 |
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
|
| 166 |
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().to(torch.bfloat16)
|
| 167 |
video = [video]
|
| 168 |
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
|
| 169 |
time_instruction = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. "
|
|
|
|
|
|
|
| 170 |
question = DEFAULT_IMAGE_TOKEN + f"\n{time_instruction}\n{perspective_prompt} {task_prompt}"
|
| 171 |
+
|
| 172 |
conv = copy.deepcopy(conv_templates[conv_template])
|
| 173 |
conv.append_message(conv.roles[0], question)
|
| 174 |
conv.append_message(conv.roles[1], None)
|
| 175 |
prompt_question = conv.get_prompt()
|
| 176 |
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
|
| 177 |
+
|
| 178 |
cont = model.generate(
|
| 179 |
input_ids,
|
| 180 |
images=video,
|
|
|
|
| 190 |
|
| 191 |
## Training
|
| 192 |
|
| 193 |
+
See details in Ye et al. 2025.
|
| 194 |
|
| 195 |
### Model
|
| 196 |
- **Architecture**: SO400M + Qwen2
|