Version 0.0.4
Browse files- main_GPU_V004.py +243 -0
- main_Testing_V004.py +156 -0
main_GPU_V004.py
ADDED
|
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import sqlite3
|
| 4 |
+
from datasets import Dataset
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TFAutoModelForSequenceClassification, Trainer, TrainingArguments
|
| 6 |
+
from bs4 import BeautifulSoup
|
| 7 |
+
import xml.etree.ElementTree as ET
|
| 8 |
+
import pyth.plugins.rtf15.reader as rtf15_reader
|
| 9 |
+
import pyth.plugins.plaintext.writer as plaintext_writer
|
| 10 |
+
|
| 11 |
+
SUPPORTED_FILE_TYPES = ['.sh', '.bat', '.ps1', '.cs', '.c', '.cpp', '.h', '.cmake', '.py', '.git', '.sql', '.csv', '.sqlite', '.lsl', '.html', '.xml', '.rtf']
|
| 12 |
+
|
| 13 |
+
def extrahiere_parameter(file_path):
|
| 14 |
+
try:
|
| 15 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
| 16 |
+
lines = file.readlines()
|
| 17 |
+
anzahl_zeilen = len(lines)
|
| 18 |
+
anzahl_zeichen = sum(len(line) for line in lines)
|
| 19 |
+
long_text_mode = anzahl_zeilen > 1000
|
| 20 |
+
dimensionalität = 1 # Beispielwert, kann angepasst werden
|
| 21 |
+
return {
|
| 22 |
+
"text": file_path,
|
| 23 |
+
"anzahl_zeilen": anzahl_zeilen,
|
| 24 |
+
"anzahl_zeichen": anzahl_zeichen,
|
| 25 |
+
"long_text_mode": long_text_mode,
|
| 26 |
+
"dimensionalität": dimensionalität
|
| 27 |
+
}
|
| 28 |
+
except UnicodeDecodeError as e:
|
| 29 |
+
print(f"Fehler beim Lesen der Datei {file_path}: {e}")
|
| 30 |
+
return None
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f"Allgemeiner Fehler beim Lesen der Datei {file_path}: {e}")
|
| 33 |
+
return None
|
| 34 |
+
|
| 35 |
+
def extrahiere_parameter_html(file_path):
|
| 36 |
+
try:
|
| 37 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
| 38 |
+
content = file.read()
|
| 39 |
+
soup = BeautifulSoup(content, 'html.parser')
|
| 40 |
+
text = soup.get_text()
|
| 41 |
+
anzahl_zeilen = text.count('\n')
|
| 42 |
+
anzahl_zeichen = len(text)
|
| 43 |
+
long_text_mode = anzahl_zeilen > 1000
|
| 44 |
+
dimensionalität = 1
|
| 45 |
+
return {
|
| 46 |
+
"text": text,
|
| 47 |
+
"anzahl_zeilen": anzahl_zeilen,
|
| 48 |
+
"anzahl_zeichen": anzahl_zeichen,
|
| 49 |
+
"long_text_mode": long_text_mode,
|
| 50 |
+
"dimensionalität": dimensionalität
|
| 51 |
+
}
|
| 52 |
+
except Exception as e:
|
| 53 |
+
print(f"Fehler beim Lesen der HTML-Datei {file_path}: {e}")
|
| 54 |
+
return None
|
| 55 |
+
|
| 56 |
+
def extrahiere_parameter_xml(file_path):
|
| 57 |
+
try:
|
| 58 |
+
tree = ET.parse(file_path)
|
| 59 |
+
root = tree.getroot()
|
| 60 |
+
text = ET.tostring(root, encoding='unicode', method='text')
|
| 61 |
+
anzahl_zeilen = text.count('\n')
|
| 62 |
+
anzahl_zeichen = len(text)
|
| 63 |
+
long_text_mode = anzahl_zeilen > 1000
|
| 64 |
+
dimensionalität = 1
|
| 65 |
+
return {
|
| 66 |
+
"text": text,
|
| 67 |
+
"anzahl_zeilen": anzahl_zeilen,
|
| 68 |
+
"anzahl_zeichen": anzahl_zeichen,
|
| 69 |
+
"long_text_mode": long_text_mode,
|
| 70 |
+
"dimensionalität": dimensionalität
|
| 71 |
+
}
|
| 72 |
+
except Exception as e:
|
| 73 |
+
print(f"Fehler beim Lesen der XML-Datei {file_path}: {e}")
|
| 74 |
+
return None
|
| 75 |
+
|
| 76 |
+
def extrahiere_parameter_rtf(file_path):
|
| 77 |
+
try:
|
| 78 |
+
with open(file_path, 'rb') as file:
|
| 79 |
+
doc = rtf15_reader.read(file)
|
| 80 |
+
text = plaintext_writer.write(doc).getvalue()
|
| 81 |
+
anzahl_zeilen = text.count('\n')
|
| 82 |
+
anzahl_zeichen = len(text)
|
| 83 |
+
long_text_mode = anzahl_zeilen > 1000
|
| 84 |
+
dimensionalität = 1
|
| 85 |
+
return {
|
| 86 |
+
"text": text,
|
| 87 |
+
"anzahl_zeilen": anzahl_zeilen,
|
| 88 |
+
"anzahl_zeichen": anzahl_zeichen,
|
| 89 |
+
"long_text_mode": long_text_mode,
|
| 90 |
+
"dimensionalität": dimensionalität
|
| 91 |
+
}
|
| 92 |
+
except Exception as e:
|
| 93 |
+
print(f"Fehler beim Lesen der RTF-Datei {file_path}: {e}")
|
| 94 |
+
return None
|
| 95 |
+
|
| 96 |
+
def durchsuchen_und_extrahieren(root_dir, db_pfad):
|
| 97 |
+
try:
|
| 98 |
+
with sqlite3.connect(db_pfad) as conn:
|
| 99 |
+
cursor = conn.cursor()
|
| 100 |
+
cursor.execute('''CREATE TABLE IF NOT EXISTS dateiparameter
|
| 101 |
+
(id INTEGER PRIMARY KEY,
|
| 102 |
+
dateipfad TEXT,
|
| 103 |
+
anzahl_zeilen INTEGER,
|
| 104 |
+
anzahl_zeichen INTEGER,
|
| 105 |
+
long_text_mode BOOLEAN,
|
| 106 |
+
dimensionalität INTEGER)''')
|
| 107 |
+
|
| 108 |
+
for subdir, _, files in os.walk(root_dir):
|
| 109 |
+
for file in files:
|
| 110 |
+
file_path = os.path.join(subdir, file)
|
| 111 |
+
if file.endswith('.html'):
|
| 112 |
+
parameter = extrahiere_parameter_html(file_path)
|
| 113 |
+
elif file.endswith('.xml'):
|
| 114 |
+
parameter = extrahiere_parameter_xml(file_path)
|
| 115 |
+
elif file.endswith('.rtf'):
|
| 116 |
+
parameter = extrahiere_parameter_rtf(file_path)
|
| 117 |
+
elif any(file.endswith(ext) for ext in SUPPORTED_FILE_TYPES):
|
| 118 |
+
parameter = extrahiere_parameter(file_path)
|
| 119 |
+
else:
|
| 120 |
+
continue
|
| 121 |
+
|
| 122 |
+
if parameter:
|
| 123 |
+
cursor.execute('''INSERT INTO dateiparameter (dateipfad, anzahl_zeilen, anzahl_zeichen, long_text_mode, dimensionalität)
|
| 124 |
+
VALUES (?, ?, ?, ?, ?)''', (file_path, parameter["anzahl_zeilen"], parameter["anzahl_zeichen"], parameter["long_text_mode"], parameter["dimensionalität"]))
|
| 125 |
+
conn.commit()
|
| 126 |
+
print("Parameter erfolgreich extrahiert und in der Datenbank gespeichert.")
|
| 127 |
+
except sqlite3.Error as e:
|
| 128 |
+
print(f"SQLite Fehler: {e}")
|
| 129 |
+
except Exception as e:
|
| 130 |
+
print(f"Allgemeiner Fehler: {e}")
|
| 131 |
+
|
| 132 |
+
def extrahiere_parameter_aus_db(db_pfad):
|
| 133 |
+
try:
|
| 134 |
+
with sqlite3.connect(db_pfad) as conn:
|
| 135 |
+
cursor = conn.cursor()
|
| 136 |
+
cursor.execute("SELECT * FROM dateiparameter")
|
| 137 |
+
daten = cursor.fetchall()
|
| 138 |
+
return daten
|
| 139 |
+
except sqlite3.Error as e:
|
| 140 |
+
print(f"SQLite Fehler: {e}")
|
| 141 |
+
return None
|
| 142 |
+
except Exception as e:
|
| 143 |
+
print(f"Allgemeiner Fehler: {e}")
|
| 144 |
+
return None
|
| 145 |
+
|
| 146 |
+
def konvertiere_zu_hf_dataset(daten):
|
| 147 |
+
dataset_dict = {
|
| 148 |
+
"text": [],
|
| 149 |
+
"anzahl_zeilen": [],
|
| 150 |
+
"anzahl_zeichen": [],
|
| 151 |
+
"long_text_mode": [],
|
| 152 |
+
"dimensionalität": []
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
for eintrag in daten:
|
| 156 |
+
dataset_dict["text"].append(eintrag[1]) # 'text' entspricht 'dateipfad'
|
| 157 |
+
dataset_dict["anzahl_zeilen"].append(eintrag[2])
|
| 158 |
+
dataset_dict["anzahl_zeichen"].append(eintrag[3])
|
| 159 |
+
dataset_dict["long_text_mode"].append(eintrag[4])
|
| 160 |
+
dataset_dict["dimensionalität"].append(eintrag[5])
|
| 161 |
+
|
| 162 |
+
return Dataset.from_dict(dataset_dict)
|
| 163 |
+
|
| 164 |
+
def trainiere_und_speichere_modell(hf_dataset, output_model_dir):
|
| 165 |
+
try:
|
| 166 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", use_fast=True)
|
| 167 |
+
|
| 168 |
+
def tokenize_function(examples):
|
| 169 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True)
|
| 170 |
+
|
| 171 |
+
tokenized_datasets = hf_dataset.map(tokenize_function, batched=True)
|
| 172 |
+
|
| 173 |
+
# Beispielhaftes Hinzufügen von Dummy-Labels für das Training
|
| 174 |
+
tokenized_datasets = tokenized_datasets.map(lambda examples: {"label": [0.0] * len(examples["text"])}, batched=True) # Dummy labels as float
|
| 175 |
+
|
| 176 |
+
# Aufteilen des Datensatzes in Training und Test
|
| 177 |
+
train_test_split = tokenized_datasets.train_test_split(test_size=0.2)
|
| 178 |
+
train_dataset = train_test_split["train"]
|
| 179 |
+
eval_dataset = train_test_split["test"]
|
| 180 |
+
|
| 181 |
+
num_labels = len(set(train_dataset["label"]))
|
| 182 |
+
|
| 183 |
+
# PyTorch Modell
|
| 184 |
+
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_labels)
|
| 185 |
+
|
| 186 |
+
training_args = TrainingArguments(
|
| 187 |
+
output_dir=output_model_dir,
|
| 188 |
+
evaluation_strategy="epoch", # Aktualisiert nach der Deprecation-Warnung
|
| 189 |
+
per_device_train_batch_size=8,
|
| 190 |
+
per_device_eval_batch_size=8,
|
| 191 |
+
num_train_epochs=3,
|
| 192 |
+
weight_decay=0.01,
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
trainer = Trainer(
|
| 196 |
+
model=model,
|
| 197 |
+
args=training_args,
|
| 198 |
+
train_dataset=train_dataset,
|
| 199 |
+
eval_dataset=eval_dataset,
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
trainer.train()
|
| 203 |
+
model.save_pretrained(output_model_dir)
|
| 204 |
+
tokenizer.save_pretrained(output_model_dir)
|
| 205 |
+
|
| 206 |
+
# TensorFlow Modell
|
| 207 |
+
tf_model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_labels)
|
| 208 |
+
tf_model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
|
| 209 |
+
|
| 210 |
+
# Dummy-Daten für das Speichern im TensorFlow-Format
|
| 211 |
+
import tensorflow as tf
|
| 212 |
+
dummy_input = tf.constant(tokenizer("This is a dummy input", return_tensors="tf")["input_ids"])
|
| 213 |
+
|
| 214 |
+
# Speichern des TensorFlow-Modells
|
| 215 |
+
tf_model(dummy_input) # Modell einmal aufrufen, um es zu "bauen"
|
| 216 |
+
tf_model.save_pretrained(output_model_dir)
|
| 217 |
+
|
| 218 |
+
print(f"Das Modell wurde erfolgreich in {output_model_dir} gespeichert.")
|
| 219 |
+
|
| 220 |
+
except Exception as e:
|
| 221 |
+
print(f"Fehler beim Trainieren und Speichern des Modells: {e}")
|
| 222 |
+
|
| 223 |
+
if __name__ == "__main__":
|
| 224 |
+
# Verzeichnispfad als Argument übergeben, falls vorhanden
|
| 225 |
+
if len(sys.argv) > 1:
|
| 226 |
+
directory_path = sys.argv[1]
|
| 227 |
+
else:
|
| 228 |
+
directory_path = '.' # Standardverzeichnis, falls kein Argument übergeben wurde
|
| 229 |
+
|
| 230 |
+
db_name = os.path.basename(os.path.normpath(directory_path)) + '.db'
|
| 231 |
+
|
| 232 |
+
durchsuchen_und_extrahieren(directory_path, db_name)
|
| 233 |
+
|
| 234 |
+
daten = extrahiere_parameter_aus_db(db_name)
|
| 235 |
+
if daten:
|
| 236 |
+
hf_dataset = konvertiere_zu_hf_dataset(daten)
|
| 237 |
+
|
| 238 |
+
output_model = os.path.basename(os.path.normpath(directory_path)) + '_model' # Verzeichnisname Modell
|
| 239 |
+
output_model_dir = os.path.join(os.path.dirname(db_name), output_model)
|
| 240 |
+
|
| 241 |
+
trainiere_und_speichere_modell(hf_dataset, output_model_dir)
|
| 242 |
+
else:
|
| 243 |
+
print("Keine Daten gefunden, um ein HF-Dataset zu erstellen.")
|
main_Testing_V004.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import sqlite3
|
| 4 |
+
import tkinter as tk
|
| 5 |
+
from tkinter import ttk
|
| 6 |
+
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import matplotlib
|
| 9 |
+
|
| 10 |
+
SUPPORTED_FILE_TYPES = ['.sh', '.bat', '.ps1', '.cs', '.c', '.cpp', '.h', '.cmake', '.py', '.git', '.sql', '.csv', '.sqlite', '.lsl', '.html', '.xml', '.rtf']
|
| 11 |
+
|
| 12 |
+
# Globale Einstellung für Schriftgröße in Matplotlib um 10% verkleinern
|
| 13 |
+
matplotlib.rcParams.update({'font.size': plt.rcParams['font.size'] * 0.8})
|
| 14 |
+
|
| 15 |
+
class DatenVisualizer(tk.Tk):
|
| 16 |
+
def __init__(self, db_pfad):
|
| 17 |
+
super().__init__()
|
| 18 |
+
|
| 19 |
+
self.title("Daten Visualizer")
|
| 20 |
+
self.geometry("1200x720") # 20% größer
|
| 21 |
+
|
| 22 |
+
# Fenster für Anzahl der Zeichen
|
| 23 |
+
self.chars_window = tk.Toplevel(self)
|
| 24 |
+
self.chars_window.title("Anzahl der Zeichen")
|
| 25 |
+
self.chars_window.geometry("480x360") # 20% größer
|
| 26 |
+
self.chars_window.protocol("WM_DELETE_WINDOW", self.close_chars_window)
|
| 27 |
+
|
| 28 |
+
# Frame für die Anzahl der Zeichen
|
| 29 |
+
self.chars_frame = ttk.Frame(self.chars_window)
|
| 30 |
+
self.chars_frame.pack(side=tk.TOP, fill=tk.BOTH, expand=True)
|
| 31 |
+
|
| 32 |
+
# Anzahl der Zeichen pro Datei
|
| 33 |
+
self.anzeigen_anzahl_zeichen(db_pfad)
|
| 34 |
+
|
| 35 |
+
# Fenster für Qualität des Datensatzes
|
| 36 |
+
self.quality_window = tk.Toplevel(self)
|
| 37 |
+
self.quality_window.title("Qualität des Datensatzes")
|
| 38 |
+
self.quality_window.geometry("480x360") # 20% größer
|
| 39 |
+
self.quality_window.protocol("WM_DELETE_WINDOW", self.close_quality_window)
|
| 40 |
+
|
| 41 |
+
# Frame für die Qualität des Datensatzes
|
| 42 |
+
self.quality_frame = ttk.Frame(self.quality_window)
|
| 43 |
+
self.quality_frame.pack(side=tk.TOP, fill=tk.BOTH, expand=True)
|
| 44 |
+
|
| 45 |
+
# Qualität des Datensatzes
|
| 46 |
+
self.anzeigen_qualität(db_pfad)
|
| 47 |
+
|
| 48 |
+
# Frame für den Treeview und die Datenvisualisierung
|
| 49 |
+
self.tree_frame = ttk.Frame(self)
|
| 50 |
+
self.tree_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True)
|
| 51 |
+
|
| 52 |
+
# Treeview für die Daten
|
| 53 |
+
self.tree = ttk.Treeview(self.tree_frame)
|
| 54 |
+
self.tree["columns"] = ("dateipfad", "anzahl_zeilen", "anzahl_zeichen", "long_text_mode", "dimensionalität")
|
| 55 |
+
self.tree.heading("#0", text="ID")
|
| 56 |
+
self.tree.heading("dateipfad", text="Dateipfad")
|
| 57 |
+
self.tree.heading("anzahl_zeilen", text="Anzahl Zeilen")
|
| 58 |
+
self.tree.heading("anzahl_zeichen", text="Anzahl Zeichen")
|
| 59 |
+
self.tree.heading("long_text_mode", text="Long Text Mode")
|
| 60 |
+
self.tree.heading("dimensionalität", text="Dimensionalität")
|
| 61 |
+
|
| 62 |
+
self.tree_scroll = ttk.Scrollbar(self.tree_frame, orient=tk.VERTICAL, command=self.tree.yview)
|
| 63 |
+
self.tree.configure(yscrollcommand=self.tree_scroll.set)
|
| 64 |
+
|
| 65 |
+
self.tree.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)
|
| 66 |
+
self.tree_scroll.pack(side=tk.RIGHT, fill=tk.Y)
|
| 67 |
+
|
| 68 |
+
self.lade_daten_aus_db(db_pfad)
|
| 69 |
+
|
| 70 |
+
def lade_daten_aus_db(self, db_pfad):
|
| 71 |
+
try:
|
| 72 |
+
with sqlite3.connect(db_pfad) as conn:
|
| 73 |
+
cursor = conn.cursor()
|
| 74 |
+
cursor.execute("SELECT * FROM dateiparameter")
|
| 75 |
+
daten = cursor.fetchall()
|
| 76 |
+
|
| 77 |
+
for row in daten:
|
| 78 |
+
self.tree.insert("", tk.END, values=row)
|
| 79 |
+
|
| 80 |
+
except sqlite3.Error as e:
|
| 81 |
+
print(f"SQLite Fehler: {e}")
|
| 82 |
+
except Exception as e:
|
| 83 |
+
print(f"Allgemeiner Fehler: {e}")
|
| 84 |
+
|
| 85 |
+
def anzeigen_anzahl_zeichen(self, db_pfad):
|
| 86 |
+
try:
|
| 87 |
+
with sqlite3.connect(db_pfad) as conn:
|
| 88 |
+
cursor = conn.cursor()
|
| 89 |
+
cursor.execute("SELECT dateipfad, anzahl_zeichen FROM dateiparameter")
|
| 90 |
+
daten = cursor.fetchall()
|
| 91 |
+
|
| 92 |
+
# Matplotlib Grafik für Anzahl Zeichen pro Datei
|
| 93 |
+
plot_figure_chars = plt.Figure(figsize=(6, 4.5), dpi=100) # 20% größer
|
| 94 |
+
plot_ax_chars = plot_figure_chars.add_subplot(111)
|
| 95 |
+
plot_ax_chars.bar([row[0] for row in daten], [int(row[1]) for row in daten], color='orange')
|
| 96 |
+
plot_ax_chars.set_xlabel("Dateipfad")
|
| 97 |
+
plot_ax_chars.set_ylabel("Anzahl Zeichen")
|
| 98 |
+
|
| 99 |
+
plot_canvas_chars = FigureCanvasTkAgg(plot_figure_chars, master=self.chars_frame)
|
| 100 |
+
plot_canvas_chars.get_tk_widget().pack()
|
| 101 |
+
|
| 102 |
+
except sqlite3.Error as e:
|
| 103 |
+
print(f"SQLite Fehler: {e}")
|
| 104 |
+
except Exception as e:
|
| 105 |
+
print(f"Allgemeiner Fehler: {e}")
|
| 106 |
+
|
| 107 |
+
def anzeigen_qualität(self, db_pfad):
|
| 108 |
+
try:
|
| 109 |
+
with sqlite3.connect(db_pfad) as conn:
|
| 110 |
+
cursor = conn.cursor()
|
| 111 |
+
cursor.execute("SELECT * FROM dateiparameter")
|
| 112 |
+
daten = cursor.fetchall()
|
| 113 |
+
|
| 114 |
+
# Berechnung der Qualität des Datensatzes
|
| 115 |
+
anzahl_dateien = len(daten)
|
| 116 |
+
durchschnittliche_anzahl_zeichen = sum(int(row[3]) for row in daten) / anzahl_dateien if anzahl_dateien > 0 else 0
|
| 117 |
+
durchschnittliche_anzahl_zeilen = sum(int(row[2]) for row in daten) / anzahl_dateien if anzahl_dateien > 0 else 0
|
| 118 |
+
|
| 119 |
+
# Matplotlib Grafik für Qualität
|
| 120 |
+
plot_figure_quality = plt.Figure(figsize=(6, 4.5), dpi=100) # 20% größer
|
| 121 |
+
plot_ax_quality = plot_figure_quality.add_subplot(111)
|
| 122 |
+
plot_ax_quality.bar(["Durchschnittliche Anzahl Zeichen", "Durchschnittliche Anzahl Zeilen"], [durchschnittliche_anzahl_zeichen, durchschnittliche_anzahl_zeilen], color=['skyblue', 'lightgreen'])
|
| 123 |
+
plot_ax_quality.set_xlabel("Metrik")
|
| 124 |
+
plot_ax_quality.set_ylabel("Durchschnittswerte")
|
| 125 |
+
|
| 126 |
+
plot_canvas_quality = FigureCanvasTkAgg(plot_figure_quality, master=self.quality_frame)
|
| 127 |
+
plot_canvas_quality.get_tk_widget().pack()
|
| 128 |
+
|
| 129 |
+
except sqlite3.Error as e:
|
| 130 |
+
print(f"SQLite Fehler: {e}")
|
| 131 |
+
except Exception as e:
|
| 132 |
+
print(f"Allgemeiner Fehler: {e}")
|
| 133 |
+
|
| 134 |
+
def close_chars_window(self):
|
| 135 |
+
self.chars_window.destroy()
|
| 136 |
+
|
| 137 |
+
def close_quality_window(self):
|
| 138 |
+
self.quality_window.destroy()
|
| 139 |
+
|
| 140 |
+
def main(db_pfad):
|
| 141 |
+
try:
|
| 142 |
+
daten_visualizer = DatenVisualizer(db_pfad)
|
| 143 |
+
daten_visualizer.mainloop()
|
| 144 |
+
|
| 145 |
+
except Exception as e:
|
| 146 |
+
print(f"Fehler beim Hauptprogramm: {e}")
|
| 147 |
+
|
| 148 |
+
if __name__ == "__main__":
|
| 149 |
+
# Verzeichnispfad als Argument übergeben, falls vorhanden
|
| 150 |
+
if len(sys.argv) > 1:
|
| 151 |
+
db_pfad = sys.argv[1]
|
| 152 |
+
else:
|
| 153 |
+
print("Bitte geben Sie den Pfad zur SQLite-Datenbank als Argument an.")
|
| 154 |
+
sys.exit(1)
|
| 155 |
+
|
| 156 |
+
main(db_pfad)
|