Update README.md
Browse files
README.md
CHANGED
|
@@ -20,16 +20,16 @@ language:
|
|
| 20 |
- multilingual
|
| 21 |
extra_gated_eu_disallowed: true
|
| 22 |
---
|
|
|
|
| 23 |
<h1 align="center">Euler-Legal-Embedding-V1</h1>
|
| 24 |
<p align="center">
|
| 25 |
-
<a href="https://huggingface.co/
|
| 26 |
<img src="https://img.shields.io/badge/%F0%9F%A4%97_HuggingFace-Model-ffbd45.svg" alt="HuggingFace">
|
| 27 |
</a>
|
| 28 |
-
|
| 29 |
</p>
|
| 30 |
|
| 31 |
## Short Description
|
| 32 |
-
Euler-Legal-Embedding-V1
|
| 33 |
|
| 34 |
## Model Details
|
| 35 |
- **Base Model**: Qwen/Qwen3-Embedding-8B
|
|
@@ -38,26 +38,36 @@ Euler-Legal-Embedding-V1 is a specialized embedding model for the legal domain,
|
|
| 38 |
- **Max Input Tokens**: 1536
|
| 39 |
- **Pooling**: Last token pooling (Standard for Qwen-Embedding)
|
| 40 |
- **Training Data**: Legal domain specific dataset (`final-data-new-anonymized-grok4-filtered.jsonl`)
|
|
|
|
| 41 |
## Usage
|
|
|
|
| 42 |
### sentence-transformers support
|
|
|
|
| 43 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
|
|
|
| 44 |
```bash
|
| 45 |
pip install -U sentence-transformers
|
|
|
|
|
|
|
| 46 |
You can use the model like this:
|
| 47 |
|
|
|
|
| 48 |
from sentence_transformers import SentenceTransformer
|
| 49 |
import torch
|
|
|
|
| 50 |
# Load the model
|
| 51 |
# trust_remote_code=True is required for Qwen-based models
|
| 52 |
model = SentenceTransformer(
|
| 53 |
-
"
|
| 54 |
trust_remote_code=True,
|
| 55 |
model_kwargs={
|
| 56 |
"torch_dtype": torch.bfloat16,
|
| 57 |
"attn_implementation": "flash_attention_2", # Optional, requires flash-attn installed
|
| 58 |
},
|
| 59 |
)
|
|
|
|
| 60 |
model.max_seq_length = 1536
|
|
|
|
| 61 |
sentences = [
|
| 62 |
"The plaintiff filed a motion for summary judgment.",
|
| 63 |
"The court granted the motion based on lack of genuine dispute of material fact."
|
|
@@ -70,13 +80,22 @@ embeddings = model.encode(
|
|
| 70 |
batch_size=16,
|
| 71 |
show_progress_bar=True,
|
| 72 |
)
|
|
|
|
| 73 |
print(embeddings.shape)
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
| 76 |
|
|
|
|
|
|
|
|
|
|
| 77 |
import torch
|
| 78 |
from transformers import AutoModel, AutoTokenizer
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
| 80 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 81 |
model = AutoModel.from_pretrained(
|
| 82 |
model_id,
|
|
@@ -84,30 +103,51 @@ model = AutoModel.from_pretrained(
|
|
| 84 |
torch_dtype=torch.bfloat16,
|
| 85 |
device_map="auto"
|
| 86 |
)
|
|
|
|
| 87 |
sentences = ["This is a legal document.", "This is another legal document."]
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
with torch.no_grad():
|
| 90 |
outputs = model(**inputs)
|
| 91 |
-
# Last token pooling
|
|
|
|
| 92 |
embeddings = outputs.last_hidden_state[:, -1]
|
|
|
|
| 93 |
# Normalize embeddings
|
| 94 |
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
| 95 |
-
print(embeddings)
|
| 96 |
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
The model was fine-tuned using LoRA (Low-Rank Adaptation) via the Swift framework.
|
| 99 |
|
| 100 |
-
Framework
|
| 101 |
-
Loss Function
|
| 102 |
-
Batch Size
|
| 103 |
-
Learning Rate
|
| 104 |
-
LoRA Config
|
| 105 |
-
|
|
|
|
| 106 |
If you find this model useful, please consider citing:
|
| 107 |
|
|
|
|
| 108 |
@misc{euler2025legal,
|
| 109 |
title={Euler-Legal-Embedding: Advanced Legal Representation Learning},
|
| 110 |
author={LawRank Team},
|
| 111 |
year={2025},
|
| 112 |
publisher={Hugging Face}
|
| 113 |
-
}
|
|
|
|
|
|
| 20 |
- multilingual
|
| 21 |
extra_gated_eu_disallowed: true
|
| 22 |
---
|
| 23 |
+
|
| 24 |
<h1 align="center">Euler-Legal-Embedding-V1</h1>
|
| 25 |
<p align="center">
|
| 26 |
+
<a href="https://huggingface.co/Mira190/Euler-Legal-Embedding-V1">
|
| 27 |
<img src="https://img.shields.io/badge/%F0%9F%A4%97_HuggingFace-Model-ffbd45.svg" alt="HuggingFace">
|
| 28 |
</a>
|
|
|
|
| 29 |
</p>
|
| 30 |
|
| 31 |
## Short Description
|
| 32 |
+
Euler-Legal-Embedding-V1 is a specialized embedding model for the legal domain, fine-tuned on [Qwen/Qwen3-Embedding-8B](https://huggingface.co/Qwen/Qwen3-Embedding-8B). It achieves strong performance on legal retrieval and reasoning tasks within the MTEB benchmark.
|
| 33 |
|
| 34 |
## Model Details
|
| 35 |
- **Base Model**: Qwen/Qwen3-Embedding-8B
|
|
|
|
| 38 |
- **Max Input Tokens**: 1536
|
| 39 |
- **Pooling**: Last token pooling (Standard for Qwen-Embedding)
|
| 40 |
- **Training Data**: Legal domain specific dataset (`final-data-new-anonymized-grok4-filtered.jsonl`)
|
| 41 |
+
|
| 42 |
## Usage
|
| 43 |
+
|
| 44 |
### sentence-transformers support
|
| 45 |
+
|
| 46 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 47 |
+
|
| 48 |
```bash
|
| 49 |
pip install -U sentence-transformers
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
You can use the model like this:
|
| 53 |
|
| 54 |
+
```python
|
| 55 |
from sentence_transformers import SentenceTransformer
|
| 56 |
import torch
|
| 57 |
+
|
| 58 |
# Load the model
|
| 59 |
# trust_remote_code=True is required for Qwen-based models
|
| 60 |
model = SentenceTransformer(
|
| 61 |
+
"Mira190/Euler-Legal-Embedding-V1",
|
| 62 |
trust_remote_code=True,
|
| 63 |
model_kwargs={
|
| 64 |
"torch_dtype": torch.bfloat16,
|
| 65 |
"attn_implementation": "flash_attention_2", # Optional, requires flash-attn installed
|
| 66 |
},
|
| 67 |
)
|
| 68 |
+
|
| 69 |
model.max_seq_length = 1536
|
| 70 |
+
|
| 71 |
sentences = [
|
| 72 |
"The plaintiff filed a motion for summary judgment.",
|
| 73 |
"The court granted the motion based on lack of genuine dispute of material fact."
|
|
|
|
| 80 |
batch_size=16,
|
| 81 |
show_progress_bar=True,
|
| 82 |
)
|
| 83 |
+
|
| 84 |
print(embeddings.shape)
|
| 85 |
+
# Output: (2, 4096)
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
### Transformers support
|
| 89 |
|
| 90 |
+
You can also use the model directly with the `transformers` library:
|
| 91 |
+
|
| 92 |
+
```python
|
| 93 |
import torch
|
| 94 |
from transformers import AutoModel, AutoTokenizer
|
| 95 |
+
|
| 96 |
+
model_id = "Mira190/Euler-Legal-Embedding-V1"
|
| 97 |
+
|
| 98 |
+
# Load tokenizer and model
|
| 99 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 100 |
model = AutoModel.from_pretrained(
|
| 101 |
model_id,
|
|
|
|
| 103 |
torch_dtype=torch.bfloat16,
|
| 104 |
device_map="auto"
|
| 105 |
)
|
| 106 |
+
|
| 107 |
sentences = ["This is a legal document.", "This is another legal document."]
|
| 108 |
+
|
| 109 |
+
# Tokenize sentences
|
| 110 |
+
inputs = tokenizer(
|
| 111 |
+
sentences,
|
| 112 |
+
return_tensors="pt",
|
| 113 |
+
padding=True,
|
| 114 |
+
truncation=True,
|
| 115 |
+
max_length=1536
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# Move inputs to the same device as the model
|
| 119 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 120 |
+
|
| 121 |
with torch.no_grad():
|
| 122 |
outputs = model(**inputs)
|
| 123 |
+
# Last token pooling (Standard for Qwen-Embedding)
|
| 124 |
+
# Note: Qwen embeddings typically use the last hidden state of the last token (EOS or specific token)
|
| 125 |
embeddings = outputs.last_hidden_state[:, -1]
|
| 126 |
+
|
| 127 |
# Normalize embeddings
|
| 128 |
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
|
|
|
| 129 |
|
| 130 |
+
print(embeddings.shape)
|
| 131 |
+
# Output: (2, 4096)
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+
## Training Details
|
| 135 |
The model was fine-tuned using LoRA (Low-Rank Adaptation) via the Swift framework.
|
| 136 |
|
| 137 |
+
- **Framework**: Swift
|
| 138 |
+
- **Loss Function**: InfoNCE (Temperature: 0.03)
|
| 139 |
+
- **Batch Size**: 4 (per device)
|
| 140 |
+
- **Learning Rate**: 2e-5
|
| 141 |
+
- **LoRA Config**: Rank 8, Alpha 32, Dropout 0.05
|
| 142 |
+
|
| 143 |
+
## Citation
|
| 144 |
If you find this model useful, please consider citing:
|
| 145 |
|
| 146 |
+
```bibtex
|
| 147 |
@misc{euler2025legal,
|
| 148 |
title={Euler-Legal-Embedding: Advanced Legal Representation Learning},
|
| 149 |
author={LawRank Team},
|
| 150 |
year={2025},
|
| 151 |
publisher={Hugging Face}
|
| 152 |
+
}
|
| 153 |
+
```
|