--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Write a 1000-word essay on the history of the Roman Empire. - text: Tell a two-sentence horror story involving a smart fridge. - text: Compare the economic policies of Keynesianism and Monetarism in 250 words. - text: Explain the difference between HTTP and HTTPS - text: Write a SQL stored procedure to handle GDPR data deletion requests metrics: - f1 pipeline_tag: text-classification library_name: setfit inference: true base_model: sentence-transformers/paraphrase-MiniLM-L6-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-MiniLM-L6-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: f1 value: 1.0 name: F1 --- # SetFit with sentence-transformers/paraphrase-MiniLM-L6-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | | | 0 | | | 2 | | ## Evaluation ### Metrics | Label | F1 | |:--------|:----| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("Explain the difference between HTTP and HTTPS") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 8.9583 | 17 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 8 | | 1 | 8 | | 2 | 8 | ### Training Hyperparameters - batch_size: (8, 8) - num_epochs: (3, 3) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (1e-05, 1e-05) - head_learning_rate: 0.001 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: True - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - max_length: 384 - seed: 42 - evaluation_strategy: epoch - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0083 | 1 | 0.4046 | - | | 0.4167 | 50 | 0.2913 | - | | 0.8333 | 100 | 0.1724 | - | | 1.0 | 120 | - | 0.1897 | | 1.25 | 150 | 0.0825 | - | | 1.6667 | 200 | 0.0284 | - | | 2.0 | 240 | - | 0.1806 | | 2.0833 | 250 | 0.0137 | - | | 2.5 | 300 | 0.0089 | - | | 2.9167 | 350 | 0.007 | - | | 3.0 | 360 | - | 0.1806 | ### Framework Versions - Python: 3.11.13 - SetFit: 1.1.2 - Sentence Transformers: 3.3.1 - Transformers: 4.53.3 - PyTorch: 2.7.1 - Datasets: 3.0.0 - Tokenizers: 0.21.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```