Time Series Forecasting
TiRex
podestplatz commited on
Commit
00ca9a5
·
1 Parent(s): 1498187

Initial model commit

Browse files
Files changed (2) hide show
  1. README.md +113 -0
  2. model.ckpt +3 -0
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - autogluon/chronos_datasets
4
+ - Salesforce/GiftEvalPretrain
5
+ pipeline_tag: time-series-forecasting
6
+ library_name: tirex
7
+ license: other
8
+ license_link: https://huggingface.co/NX-AI/TiRex/blob/main/LICENSE
9
+ license_name: nx-ai-community-license
10
+ ---
11
+
12
+ # Changes from 1.0 to 1.1
13
+
14
+ The 1.1 release introduces **long period normalisation**, a method applied solely during inference.
15
+
16
+ ## Version 1.1-gifteval
17
+
18
+ This specific version (1.1-gifteval) includes all 1.1 improvements plus the pretraining dataset has been cleaned
19
+ to remove overlaps with the GIFT-Eval test dataset.
20
+
21
+ # TiRex
22
+
23
+ TiRex is a **time-series foundation model** designed for **time series forecasting**,
24
+ with the emphasis to provide state-of-the-art forecasts for both short- and long-term forecasting horizon.
25
+ TiRex is **35M parameter** small and is based on the **[xLSTM architecture](https://github.com/NX-AI/xlstm)** allowing fast and performant forecasts.
26
+ The model is described in the paper [TiRex: Zero-Shot Forecasting across Long and Short Horizons with Enhanced In-Context Learning](https://arxiv.org/abs/2505.23719).
27
+
28
+ ### Key Facts:
29
+
30
+ - **Zero-Shot Forecasting**:
31
+ TiRex performs forecasting without any training on your data. Just download and forecast.
32
+
33
+ - **Quantile Predictions**:
34
+ TiRex not only provides point estimates but provides quantile estimates.
35
+
36
+ - **State-of-the-art Performance over Long and Short Horizons**:
37
+ TiRex achieves top scores in various time series forecasting benchmarks, see [GiftEval](https://huggingface.co/spaces/Salesforce/GIFT-Eval) and [ChronosZS](https://huggingface.co/spaces/autogluon/fev-leaderboard).
38
+ These benchmark show that TiRex provides great performance for both long and short-term forecasting.
39
+
40
+ ## Quick Start
41
+
42
+ The inference code is available on [GitHub](https://github.com/NX-AI/tirex).
43
+
44
+ ### Installation
45
+
46
+ TiRex is currently only tested on *Linux systems* and Nvidia GPUs with compute capability >= 8.0.
47
+ If you want to use different systems, please check the [FAQ in the code repository](https://github.com/NX-AI/tirex?tab=readme-ov-file#faq--troubleshooting).
48
+ It's best to install TiRex in the specified conda environment.
49
+ The respective conda dependency file is [requirements_py26.yaml](https://github.com/NX-AI/tirex/blob/main/requirements_py26.yaml).
50
+
51
+ ```sh
52
+ # 1) Setup and activate conda env from ./requirements_py26.yaml
53
+ git clone github.com/NX-AI/tirex
54
+ conda env create --file ./tirex/requirements_py26.yaml
55
+ conda activate tirex
56
+
57
+ # 2) [Mandatory] Install Tirex
58
+
59
+ ## 2a) Install from source
60
+ git clone github.com/NX-AI/tirex # if not already cloned before
61
+ cd tirex
62
+ pip install -e .
63
+
64
+ # 2b) Install from PyPi (will be available soon)
65
+
66
+ # 2) Optional: Install also optional dependencies
67
+ pip install .[gluonts] # enable gluonTS in/output API
68
+ pip install .[hfdataset] # enable HuggingFace datasets in/output API
69
+ pip install .[notebooks] # To run the example notebooks
70
+ ```
71
+
72
+ ### Inference Example
73
+
74
+ ```python
75
+ import torch
76
+ from tirex import load_model, ForecastModel
77
+
78
+ model: ForecastModel = load_model("NX-AI/TiRex-1.1-gifteval")
79
+ data = torch.rand((5, 128)) # Sample Data (5 time series with length 128)
80
+ forecast = model.forecast(context=data, prediction_length=64, resample_strategy="frequency")
81
+ ```
82
+
83
+ We provide an extended quick start example in the [GitHub repository](https://github.com/NX-AI/tirex/blob/main/examples/quick_start_tirex.ipynb).
84
+
85
+ ### Troubleshooting / FAQ
86
+
87
+ If you have problems please check the FAQ / Troubleshooting section in the [GitHub repository](https://github.com/NX-AI/tirex)
88
+ and feel free to create a GitHub issue or start a discussion.
89
+
90
+
91
+ ### Training Data
92
+
93
+ - [chronos_datasets](https://huggingface.co/datasets/autogluon/chronos_datasets) (Subset - Zero Shot Benchmark data is not used for training - details in the paper)
94
+ - [GiftEvalPretrain](https://huggingface.co/datasets/Salesforce/GiftEvalPretrain) (Subset - details in the paper)
95
+ - Synthetic Data
96
+
97
+ ## Cite
98
+
99
+ If you use TiRex in your research, please cite our work:
100
+
101
+ ```bibtex
102
+ @article{auerTiRexZeroShotForecasting2025,
103
+ title = {{{TiRex}}: {{Zero-Shot Forecasting Across Long}} and {{Short Horizons}} with {{Enhanced In-Context Learning}}},
104
+ author = {Auer, Andreas and Podest, Patrick and Klotz, Daniel and B{\"o}ck, Sebastian and Klambauer, G{\"u}nter and Hochreiter, Sepp},
105
+ journal = {ArXiv},
106
+ volume = {2505.23719},
107
+ year = {2025}
108
+ }
109
+ ```
110
+
111
+ ## License
112
+
113
+ TiRex is licensed under the [NXAI community license](./LICENSE).
model.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9a62f5669e64e9d6e7a4395e109db11e374faf31f8cfafdd1d93dbf6880e9bb
3
+ size 141230262