nexaml commited on
Commit
b9562f8
·
verified ·
1 Parent(s): a0d8384

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - LiquidAI/LFM2-1.2B
4
+ ---
5
+
6
+ # LFM2-1.2B
7
+ Run **LFM2-1.2B** on Qualcomm NPU with [NexaSDK](https://sdk.nexa.ai).
8
+
9
+ ## Quickstart
10
+
11
+ 1. **Install NexaSDK** and create a free account at [sdk.nexa.ai](https://sdk.nexa.ai)
12
+ 2. **Activate your device** with your access token:
13
+
14
+ ```bash
15
+ nexa config set license '<access_token>'
16
+ ```
17
+ 3. Run the model locally in one line:
18
+
19
+ ```bash
20
+ nexa infer NexaAI/LFM2-1.2B-npu
21
+ ```
22
+
23
+ ## Model Description
24
+ **LFM2-1.2B** is part of Liquid AI’s second-generation **LFM2** family, designed specifically for **on-device and edge AI deployment**.
25
+ With **1.2 billion parameters**, it strikes a balance between compact size, strong reasoning, and efficient compute utilization—ideal for running on CPUs, GPUs, or NPUs.
26
+
27
+ LFM2 introduces a **hybrid Liquid architecture** with **multiplicative gates and short convolutions**, enabling faster convergence and improved contextual reasoning.
28
+ It demonstrates up to **3× faster training** and **2× faster inference** on CPU compared to Qwen3, while maintaining superior accuracy across multilingual and instruction-following benchmarks.
29
+
30
+ ## Features
31
+ - ⚡ **Speed & Efficiency** – 2× faster inference and prefill].
32
+ - 🧠 **Hybrid Liquid Architecture** – Combines multiplicative gating with convolutional layers for better reasoning and token reuse.
33
+ - 🌍 **Multilingual Competence** – Supports diverse languages for global use cases.
34
+ - 🛠 **Flexible Deployment** – Runs efficiently on CPU, GPU, and NPU hardware.
35
+ - 📈 **Benchmark Performance** – Outperforms similarly-sized models in math, knowledge, and reasoning tasks.
36
+
37
+ ## Use Cases
38
+ - Edge AI assistants and voice agents
39
+ - Offline reasoning and summarization on mobile or automotive devices
40
+ - Local code and text generation tools
41
+ - Lightweight multimodal or RAG pipelines
42
+ - Domain-specific fine-tuning for vertical applications (e.g., finance, robotics)
43
+
44
+ ## Inputs and Outputs
45
+ **Input**
46
+ - Text prompts or structured instructions (tokenized sequences for API use).
47
+
48
+ **Output**
49
+ - Natural-language or structured text generations.
50
+ - Optionally: logits or embeddings for advanced downstream integration.
51
+
52
+ ## License
53
+ This model is released under the **Creative Commons Attribution–NonCommercial 4.0 (CC BY-NC 4.0)** license.
54
+ Non-commercial use, modification, and redistribution are permitted with attribution.
55
+ For commercial licensing, please contact **[email protected]**.