Osher
commited on
Update chat.py
Browse files
chat.py
CHANGED
|
@@ -1,37 +1,37 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from model import TransformerModel
|
| 3 |
-
from tokenizer import SimpleTokenizer
|
| 4 |
-
|
| 5 |
-
# Load tokenizer
|
| 6 |
-
tokenizer = SimpleTokenizer("
|
| 7 |
-
|
| 8 |
-
# Use same values from train.py
|
| 9 |
-
vocab_size = len(tokenizer.char_to_idx)
|
| 10 |
-
embed_size = 64
|
| 11 |
-
num_heads = 2
|
| 12 |
-
hidden_dim = 128
|
| 13 |
-
num_layers = 2
|
| 14 |
-
max_len = 32
|
| 15 |
-
|
| 16 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 17 |
-
|
| 18 |
-
# Create the same model and load weights
|
| 19 |
-
model = TransformerModel(vocab_size, embed_size, num_heads, hidden_dim, num_layers, max_len).to(device)
|
| 20 |
-
model.load_state_dict(torch.load("model.pth", map_location=device))
|
| 21 |
-
model.eval()
|
| 22 |
-
|
| 23 |
-
# Chat loop
|
| 24 |
-
while True:
|
| 25 |
-
user_input = input("You: ")
|
| 26 |
-
if user_input.lower() in ["quit", "exit"]:
|
| 27 |
-
break
|
| 28 |
-
|
| 29 |
-
input_ids = tokenizer.encode(user_input)
|
| 30 |
-
input_tensor = torch.tensor([input_ids], dtype=torch.long).to(device)
|
| 31 |
-
|
| 32 |
-
with torch.no_grad():
|
| 33 |
-
output = model(input_tensor)[0] # shape: [seq_len, vocab_size]
|
| 34 |
-
prediction = torch.argmax(output, dim=-1).squeeze().tolist()
|
| 35 |
-
|
| 36 |
-
response = tokenizer.decode(prediction)
|
| 37 |
-
print("AI:", response)
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from model import TransformerModel
|
| 3 |
+
from tokenizer import SimpleTokenizer
|
| 4 |
+
|
| 5 |
+
# Load tokenizer
|
| 6 |
+
tokenizer = SimpleTokenizer("vocab_path")
|
| 7 |
+
|
| 8 |
+
# Use same values from train.py
|
| 9 |
+
vocab_size = len(tokenizer.char_to_idx)
|
| 10 |
+
embed_size = 64
|
| 11 |
+
num_heads = 2
|
| 12 |
+
hidden_dim = 128
|
| 13 |
+
num_layers = 2
|
| 14 |
+
max_len = 32
|
| 15 |
+
|
| 16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 17 |
+
|
| 18 |
+
# Create the same model and load weights
|
| 19 |
+
model = TransformerModel(vocab_size, embed_size, num_heads, hidden_dim, num_layers, max_len).to(device)
|
| 20 |
+
model.load_state_dict(torch.load("model.pth", map_location=device))
|
| 21 |
+
model.eval()
|
| 22 |
+
|
| 23 |
+
# Chat loop
|
| 24 |
+
while True:
|
| 25 |
+
user_input = input("You: ")
|
| 26 |
+
if user_input.lower() in ["quit", "exit"]:
|
| 27 |
+
break
|
| 28 |
+
|
| 29 |
+
input_ids = tokenizer.encode(user_input)
|
| 30 |
+
input_tensor = torch.tensor([input_ids], dtype=torch.long).to(device)
|
| 31 |
+
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
output = model(input_tensor)[0] # shape: [seq_len, vocab_size]
|
| 34 |
+
prediction = torch.argmax(output, dim=-1).squeeze().tolist()
|
| 35 |
+
|
| 36 |
+
response = tokenizer.decode(prediction)
|
| 37 |
+
print("AI:", response)
|