Parveshiiii commited on
Commit
e392a7a
·
verified ·
1 Parent(s): 636edc1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -95,10 +95,10 @@ inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
95
 
96
  outputs = model.generate(
97
  inputs,
98
- repetition_penalty=1.2, # you can increase it as it can often stuck in loops after it autocompletes the sentence
99
- max_new_tokens=10, # as a autocomplete model i would suggest to use lower max token as the model generates till the max token cap
100
- do_sample=True, # use this for diversity
101
- eos_token_id=tokenizer.eos_token_id # Optional: stop at end-of-text
102
  )
103
 
104
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
@@ -110,7 +110,7 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
110
  import torch
111
  from transformers import AutoTokenizer, AutoModelForCausalLM
112
 
113
- checkpoint = "HuggingFaceTB/SmolLM2-360M"
114
  device = "cuda"
115
 
116
  tokenizer = AutoTokenizer.from_pretrained(checkpoint)
@@ -126,11 +126,11 @@ inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
126
  # Generate with sampling and token control
127
  outputs = model.generate(
128
  inputs,
129
- max_new_tokens=50, # Limit output length
130
  do_sample=True, # Enable sampling for diversity
131
  temperature=0.7, # Controls randomness (lower = more deterministic)
132
  top_p=0.9, # Nucleus sampling (focus on top 90% of probability mass)
133
- repetition_penalty=1.2, # Penalize repeated phrases
134
  eos_token_id=tokenizer.eos_token_id # Optional: stop at end-of-text
135
  )
136
 
 
95
 
96
  outputs = model.generate(
97
  inputs,
98
+ repetition_penalty=1.2, # you can increase it as it can often stuck in loops after it autocompletes the sentence
99
+ max_new_tokens=10, # as a autocomplete model i would suggest to use lower max token as the model generates till the max token cap
100
+ do_sample=True, # use this for diversity
101
+ eos_token_id=tokenizer.eos_token_id # Optional: stop at end-of-text
102
  )
103
 
104
  print(tokenizer.decode(outputs[0], skip_special_tokens=True))
 
110
  import torch
111
  from transformers import AutoTokenizer, AutoModelForCausalLM
112
 
113
+ checkpoint = "Parveshiiii/Auto-Completer-0.1"
114
  device = "cuda"
115
 
116
  tokenizer = AutoTokenizer.from_pretrained(checkpoint)
 
126
  # Generate with sampling and token control
127
  outputs = model.generate(
128
  inputs,
129
+ max_new_tokens=10, # as a autocomplete model i would suggest to use lower max token as the model generates till the max token cap
130
  do_sample=True, # Enable sampling for diversity
131
  temperature=0.7, # Controls randomness (lower = more deterministic)
132
  top_p=0.9, # Nucleus sampling (focus on top 90% of probability mass)
133
+ repetition_penalty=1.2, # you can increase it as it can often stuck in loops after it autocompletes the sentence
134
  eos_token_id=tokenizer.eos_token_id # Optional: stop at end-of-text
135
  )
136