Update README.md
Browse files
README.md
CHANGED
|
@@ -95,10 +95,10 @@ inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
|
|
| 95 |
|
| 96 |
outputs = model.generate(
|
| 97 |
inputs,
|
| 98 |
-
repetition_penalty=1.2,
|
| 99 |
-
max_new_tokens=10,
|
| 100 |
-
do_sample=True,
|
| 101 |
-
eos_token_id=tokenizer.eos_token_id
|
| 102 |
)
|
| 103 |
|
| 104 |
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
@@ -110,7 +110,7 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
| 110 |
import torch
|
| 111 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 112 |
|
| 113 |
-
checkpoint = "
|
| 114 |
device = "cuda"
|
| 115 |
|
| 116 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
|
@@ -126,11 +126,11 @@ inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
|
|
| 126 |
# Generate with sampling and token control
|
| 127 |
outputs = model.generate(
|
| 128 |
inputs,
|
| 129 |
-
max_new_tokens=
|
| 130 |
do_sample=True, # Enable sampling for diversity
|
| 131 |
temperature=0.7, # Controls randomness (lower = more deterministic)
|
| 132 |
top_p=0.9, # Nucleus sampling (focus on top 90% of probability mass)
|
| 133 |
-
repetition_penalty=1.2, #
|
| 134 |
eos_token_id=tokenizer.eos_token_id # Optional: stop at end-of-text
|
| 135 |
)
|
| 136 |
|
|
|
|
| 95 |
|
| 96 |
outputs = model.generate(
|
| 97 |
inputs,
|
| 98 |
+
repetition_penalty=1.2, # you can increase it as it can often stuck in loops after it autocompletes the sentence
|
| 99 |
+
max_new_tokens=10, # as a autocomplete model i would suggest to use lower max token as the model generates till the max token cap
|
| 100 |
+
do_sample=True, # use this for diversity
|
| 101 |
+
eos_token_id=tokenizer.eos_token_id # Optional: stop at end-of-text
|
| 102 |
)
|
| 103 |
|
| 104 |
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
|
|
| 110 |
import torch
|
| 111 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 112 |
|
| 113 |
+
checkpoint = "Parveshiiii/Auto-Completer-0.1"
|
| 114 |
device = "cuda"
|
| 115 |
|
| 116 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
|
|
|
| 126 |
# Generate with sampling and token control
|
| 127 |
outputs = model.generate(
|
| 128 |
inputs,
|
| 129 |
+
max_new_tokens=10, # as a autocomplete model i would suggest to use lower max token as the model generates till the max token cap
|
| 130 |
do_sample=True, # Enable sampling for diversity
|
| 131 |
temperature=0.7, # Controls randomness (lower = more deterministic)
|
| 132 |
top_p=0.9, # Nucleus sampling (focus on top 90% of probability mass)
|
| 133 |
+
repetition_penalty=1.2, # you can increase it as it can often stuck in loops after it autocompletes the sentence
|
| 134 |
eos_token_id=tokenizer.eos_token_id # Optional: stop at end-of-text
|
| 135 |
)
|
| 136 |
|