# Example: Using Distance-Aware Chronos import numpy as np from distance_aware_chronos import DistanceAwareChronos # Load the model model = DistanceAwareChronos.from_pretrained("YOUR_USERNAME/distance-aware-chronos") # Example 1: Simple forecasting context = np.random.randn(100) # Your time series forecast = model.predict(context, horizon=24, num_samples=100) print(f"Forecast shape: {forecast.shape}") print(f"Mean forecast: {forecast.mean()}") # Example 2: With visualization import matplotlib.pyplot as plt plt.figure(figsize=(12, 6)) plt.plot(range(len(context)), context, label='Historical', color='blue') plt.plot(range(len(context), len(context) + len(forecast)), forecast, label='Forecast', color='red', linestyle='--') plt.xlabel('Time') plt.ylabel('Value') plt.title('Time Series Forecast') plt.legend() plt.grid(True, alpha=0.3) plt.show()