Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- de
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
library_name: transformers
|
| 7 |
+
tags:
|
| 8 |
+
- Text Classification
|
| 9 |
+
- Pytorch
|
| 10 |
+
- Discourse Classification
|
| 11 |
+
- Roberta
|
| 12 |
+
---
|
| 13 |
+
# Roberta for German Discourse Classification
|
| 14 |
+
|
| 15 |
+
This is a xlm Roberta model finetuned on a German Discourse dataset of 60 discourses having a total over 10k sentences.
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
## How to use the model
|
| 19 |
+
|
| 20 |
+
```python
|
| 21 |
+
import torch
|
| 22 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 23 |
+
|
| 24 |
+
def get_label(sentence):
|
| 25 |
+
vectors = tokenizer(sentence, return_tensors='pt').to(device)
|
| 26 |
+
outputs = bert_model(**vectors).logits
|
| 27 |
+
probs = torch.nn.functional.softmax(outputs, dim = 1)[0]
|
| 28 |
+
bert_dict = {}
|
| 29 |
+
keys = ['Externalization', 'Elicitation', 'Conflict', 'Acceptence', 'Integration', 'None']
|
| 30 |
+
for i in range(len(keys)):
|
| 31 |
+
bert_dict[keys[i]] = round(probs[i].item(), 3)
|
| 32 |
+
return bert_dict
|
| 33 |
+
|
| 34 |
+
MODEL_NAME = 'RashidNLP/Roberta-German-Discourse'
|
| 35 |
+
MODEL_DIR = 'model'
|
| 36 |
+
CHECKPOINT_DIR = 'checkpoints'
|
| 37 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 38 |
+
OUTPUTS = 6
|
| 39 |
+
|
| 40 |
+
bert_model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels = OUTPUTS).to(device)
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 42 |
+
|
| 43 |
+
get_label("Gehst du zum Oktoberfest?")
|
| 44 |
+
|
| 45 |
+
```
|