Reggie commited on
Commit
42bc504
·
verified ·
1 Parent(s): 1556385

Upload 2 files

Browse files
Files changed (2) hide show
  1. flaskapp.py +20 -0
  2. minilm_keyword_pred.py +151 -0
flaskapp.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify
2
+ import torch
3
+
4
+ from minilm_keyword_pred import predict_on_text
5
+
6
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
7
+ print('dev', device)
8
+
9
+ app = Flask(__name__)
10
+
11
+ @app.route('/get_keywords', methods=['POST'])
12
+ def get_keywords():
13
+ text = request.json.get('text', '')
14
+ if not text: return jsonify({"error": "The 'text' field is required."}), 400
15
+ groups = predict_on_text(text)['predicted_groups_with_scores']
16
+ groups = [{'keyword': x[0], 'score': float(x[1])} for x in groups]
17
+ return jsonify(groups)
18
+
19
+ if __name__ == "__main__":
20
+ app.run(host="0.0.0.0", port=14005, debug=True, use_reloader=False)
minilm_keyword_pred.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import pickle
4
+ from transformers import AutoTokenizer, AutoModel
5
+ from tqdm import tqdm
6
+ import numpy as np
7
+
8
+ OFFLINE_MODEL_PATH = "all-MiniLM-L6-v2"
9
+
10
+ # ==============================================================================
11
+ # STEP 1: DEFINE THE MODEL ARCHITECTURE
12
+ # This MUST be the exact same class definition you used for training.
13
+ # ==============================================================================
14
+ class ImprovedMultiTaskClassifier(nn.Module):
15
+ def __init__(self, model_name, num_keywords, num_groups, dropout_rate=0.1):
16
+ super(ImprovedMultiTaskClassifier, self).__init__()
17
+ self.transformer = AutoModel.from_pretrained(model_name)
18
+ hidden_size = self.transformer.config.hidden_size
19
+
20
+ self.keyword_classifier = nn.Sequential(
21
+ nn.Linear(hidden_size, hidden_size),
22
+ nn.LayerNorm(hidden_size), nn.ReLU(), nn.Dropout(dropout_rate),
23
+ nn.Linear(hidden_size, hidden_size // 2),
24
+ nn.LayerNorm(hidden_size // 2), nn.ReLU(), nn.Dropout(dropout_rate),
25
+ nn.Linear(hidden_size // 2, num_keywords)
26
+ )
27
+ self.group_classifier = nn.Sequential(
28
+ nn.Linear(hidden_size, hidden_size),
29
+ nn.LayerNorm(hidden_size), nn.ReLU(), nn.Dropout(dropout_rate),
30
+ nn.Linear(hidden_size, hidden_size // 2),
31
+ nn.LayerNorm(hidden_size // 2), nn.ReLU(), nn.Dropout(dropout_rate),
32
+ nn.Linear(hidden_size // 2, num_groups)
33
+ )
34
+
35
+ def forward(self, input_ids, attention_mask):
36
+ outputs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)
37
+ token_embeddings = outputs.last_hidden_state
38
+ attention_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
39
+ sum_embeddings = torch.sum(token_embeddings * attention_mask_expanded, 1)
40
+ sum_mask = torch.clamp(attention_mask_expanded.sum(1), min=1e-9)
41
+ pooled_output = sum_embeddings / sum_mask
42
+ keyword_logits = self.keyword_classifier(pooled_output)
43
+ group_logits = self.group_classifier(pooled_output)
44
+ return keyword_logits, group_logits
45
+
46
+
47
+ # ==============================================================================
48
+ # STEP 2: LOAD ALL SAVED COMPONENTS
49
+ # ==============================================================================
50
+ print("Loading all components for inference...")
51
+
52
+ # Set device
53
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
54
+ print(f"Using device: {device}")
55
+
56
+ # Load config
57
+ with open('minilm_keyword_classifier_gemini/inference_config.pkl', 'rb') as f:
58
+ config = pickle.load(f)
59
+
60
+ # *** IMPORTANT: Override the model_name to use the local path ***
61
+ config['model_name'] = OFFLINE_MODEL_PATH
62
+ # Load tokenizer from the same offline path
63
+ tokenizer = AutoTokenizer.from_pretrained(OFFLINE_MODEL_PATH)
64
+
65
+ # Load tokenizer
66
+ tokenizer = AutoTokenizer.from_pretrained('minilm_keyword_classifier_gemini/inference_tokenizer')
67
+
68
+ # Load label encoders
69
+ with open('minilm_keyword_classifier_gemini/inference_mlb_keywords.pkl', 'rb') as f:
70
+ mlb_keywords = pickle.load(f)
71
+ with open('minilm_keyword_classifier_gemini/inference_mlb_groups.pkl', 'rb') as f:
72
+ mlb_groups = pickle.load(f)
73
+
74
+ # Instantiate the model architecture
75
+ num_keywords = len(mlb_keywords.classes_)
76
+ num_groups = len(mlb_groups.classes_)
77
+ model = ImprovedMultiTaskClassifier(config['model_name'], num_keywords, num_groups).to(device)
78
+
79
+ # Load the trained weights
80
+ model.load_state_dict(torch.load('minilm_keyword_classifier_gemini/inference_model.pth', map_location=device))
81
+
82
+ # Set model to evaluation mode (very important!)
83
+ model.eval()
84
+
85
+ print("✅ All components loaded and model is ready for inference.")
86
+
87
+
88
+ # ==============================================================================
89
+ # STEP 3: CREATE THE PREDICTION FUNCTION (MODIFIED TO INCLUDE SCORES)
90
+ # ==============================================================================
91
+ def predict_on_text(text: str):
92
+ """
93
+ Takes a string of text and returns the predicted keywords and groups
94
+ along with their confidence scores.
95
+ """
96
+ with torch.no_grad():
97
+ encoding = tokenizer(
98
+ text,
99
+ truncation=True,
100
+ padding='max_length',
101
+ max_length=512,
102
+ return_tensors='pt'
103
+ )
104
+ input_ids = encoding['input_ids'].to(device)
105
+ attention_mask = encoding['attention_mask'].to(device)
106
+
107
+ keyword_logits, group_logits = model(input_ids, attention_mask)
108
+
109
+ keyword_probs = torch.sigmoid(keyword_logits).cpu().numpy()[0]
110
+ group_probs = torch.sigmoid(group_logits).cpu().numpy()[0]
111
+
112
+ kw_threshold = config['optimal_keyword_threshold']
113
+ gr_threshold = config['optimal_group_threshold']
114
+
115
+ # --- MODIFICATION START ---
116
+ # Get keywords that are above the threshold
117
+ kw_indices = np.where(keyword_probs > kw_threshold)[0]
118
+ predicted_keywords_with_scores = [
119
+ (mlb_keywords.classes_[i], keyword_probs[i]) for i in kw_indices
120
+ ]
121
+
122
+ # Get groups that are above the threshold
123
+ gr_indices = np.where(group_probs > gr_threshold)[0]
124
+ predicted_groups_with_scores = [
125
+ (mlb_groups.classes_[i], group_probs[i]) for i in gr_indices
126
+ ]
127
+
128
+ # Sort predictions by score in descending order
129
+ predicted_keywords_with_scores.sort(key=lambda x: x[1], reverse=True)
130
+ predicted_groups_with_scores.sort(key=lambda x: x[1], reverse=True)
131
+ # --- MODIFICATION END ---
132
+
133
+ return {
134
+ 'predicted_keywords_with_scores': predicted_keywords_with_scores,
135
+ 'predicted_groups_with_scores': predicted_groups_with_scores,
136
+ }
137
+
138
+
139
+
140
+ # list through all csv files in automarked\todo folder. Read the content column and loop through all the content there as text
141
+ # for file in glob.glob('automarked\\todo\\*.csv'):
142
+ # with open(file, 'r', newline='', encoding='utf-8', errors='ignore') as f:
143
+ # reader = csv.DictReader(f)
144
+ # for row in reader:
145
+ # text = row['content']
146
+
147
+ text = """I want you to understand, people think there are many problems in the world. There are no many problems in the world. There's only one problem in the world – human being. What other problem, I'm asking"""
148
+
149
+ dpred = predict_on_text(text)
150
+ for d in dpred['predicted_groups_with_scores']:
151
+ print(d[0], d[1], d[1] > 0.5)