Shankhdhar commited on
Commit
a9a592c
·
verified ·
1 Parent(s): 5a5cd73

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,297 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: What are the different types of zari used in the sarees?
14
+ - text: I need to change the delivery address for my recent order, how can I do that?
15
+ - text: I need to return an item, what is the return policy for online orders?
16
+ - text: Are there any sarees with Fekwa Weave technique?
17
+ - text: What are the different colors in the Air Jordan 1 Retro High OG Volt Gold?
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.8666666666666667
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 6 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | Out of Scope | <ul><li>'Why is your website so slow?'</li><li>'Can I get a shoutout on your social media?'</li><li>'I like to listen to classical music'</li></ul> |
66
+ | product faq | <ul><li>'What is the price of the Temple Butidaar Multi Color Border Pure Silk Chiffon Georgette Saree?'</li><li>'Do you have the Air Jordan 1 Low Shadow Brown/Brown Kelp- Sail in size 7?'</li><li>'Is the lakadong turmeric powder available for purchase?'</li></ul> |
67
+ | order tracking | <ul><li>'What is the expected delivery time for the 10 pack of Cake Boxes to Bhopal?'</li><li>'What is the delivery status for my order placed using email address [email protected]?'</li><li>'I havent received my order'</li></ul> |
68
+ | product policy | <ul><li>'What is the policy for returning a product that was part of a Cyber Monday sale?'</li><li>'Are there any exceptions to the return policy for items that were purchased with a special occasion promotion?'</li><li>'Are there any restrictions on returning sneakers with added fur or fur trim?'</li></ul> |
69
+ | product discoverability | <ul><li>'Suggest me some high ankle sneakers'</li><li>'Do you have any grocery & gourmet honey available?'</li><li>'Do you have any sneaker collaborations with artists?'</li></ul> |
70
+ | general faq | <ul><li>'How many cups of green tea should I drink daily to achieve the recommended therapeutic dosage of ECGC?'</li><li>'what is mashru silk'</li><li>'What specific compounds in Green Tea contribute to its antioxidant properties?'</li></ul> |
71
+
72
+ ## Evaluation
73
+
74
+ ### Metrics
75
+ | Label | Accuracy |
76
+ |:--------|:---------|
77
+ | **all** | 0.8667 |
78
+
79
+ ## Uses
80
+
81
+ ### Direct Use for Inference
82
+
83
+ First install the SetFit library:
84
+
85
+ ```bash
86
+ pip install setfit
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+
91
+ ```python
92
+ from setfit import SetFitModel
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SetFitModel.from_pretrained("setfit_model_id")
96
+ # Run inference
97
+ preds = model("Are there any sarees with Fekwa Weave technique?")
98
+ ```
99
+
100
+ <!--
101
+ ### Downstream Use
102
+
103
+ *List how someone could finetune this model on their own dataset.*
104
+ -->
105
+
106
+ <!--
107
+ ### Out-of-Scope Use
108
+
109
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
110
+ -->
111
+
112
+ <!--
113
+ ## Bias, Risks and Limitations
114
+
115
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
116
+ -->
117
+
118
+ <!--
119
+ ### Recommendations
120
+
121
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
122
+ -->
123
+
124
+ ## Training Details
125
+
126
+ ### Training Set Metrics
127
+ | Training set | Min | Median | Max |
128
+ |:-------------|:----|:--------|:----|
129
+ | Word count | 4 | 11.1737 | 28 |
130
+
131
+ | Label | Training Sample Count |
132
+ |:------------------------|:----------------------|
133
+ | Out of Scope | 35 |
134
+ | general faq | 24 |
135
+ | order tracking | 34 |
136
+ | product discoverability | 40 |
137
+ | product faq | 40 |
138
+ | product policy | 40 |
139
+
140
+ ### Training Hyperparameters
141
+ - batch_size: (16, 16)
142
+ - num_epochs: (2, 2)
143
+ - max_steps: -1
144
+ - sampling_strategy: oversampling
145
+ - body_learning_rate: (2e-05, 1e-05)
146
+ - head_learning_rate: 0.01
147
+ - loss: CosineSimilarityLoss
148
+ - distance_metric: cosine_distance
149
+ - margin: 0.25
150
+ - end_to_end: False
151
+ - use_amp: False
152
+ - warmup_proportion: 0.1
153
+ - seed: 42
154
+ - eval_max_steps: -1
155
+ - load_best_model_at_end: True
156
+
157
+ ### Training Results
158
+ | Epoch | Step | Training Loss | Validation Loss |
159
+ |:------:|:----:|:-------------:|:---------------:|
160
+ | 0.0004 | 1 | 0.256 | - |
161
+ | 0.0213 | 50 | 0.2639 | - |
162
+ | 0.0425 | 100 | 0.2341 | - |
163
+ | 0.0638 | 150 | 0.0407 | - |
164
+ | 0.0851 | 200 | 0.0698 | - |
165
+ | 0.1063 | 250 | 0.014 | - |
166
+ | 0.1276 | 300 | 0.0069 | - |
167
+ | 0.1489 | 350 | 0.0099 | - |
168
+ | 0.1701 | 400 | 0.0014 | - |
169
+ | 0.1914 | 450 | 0.0007 | - |
170
+ | 0.2127 | 500 | 0.0006 | - |
171
+ | 0.2339 | 550 | 0.0005 | - |
172
+ | 0.2552 | 600 | 0.0006 | - |
173
+ | 0.2765 | 650 | 0.0005 | - |
174
+ | 0.2977 | 700 | 0.0002 | - |
175
+ | 0.3190 | 750 | 0.0005 | - |
176
+ | 0.3403 | 800 | 0.0003 | - |
177
+ | 0.3615 | 850 | 0.0003 | - |
178
+ | 0.3828 | 900 | 0.0002 | - |
179
+ | 0.4041 | 950 | 0.0003 | - |
180
+ | 0.4254 | 1000 | 0.0002 | - |
181
+ | 0.4466 | 1050 | 0.0002 | - |
182
+ | 0.4679 | 1100 | 0.0001 | - |
183
+ | 0.4892 | 1150 | 0.0002 | - |
184
+ | 0.5104 | 1200 | 0.0002 | - |
185
+ | 0.5317 | 1250 | 0.0001 | - |
186
+ | 0.5530 | 1300 | 0.0002 | - |
187
+ | 0.5742 | 1350 | 0.0002 | - |
188
+ | 0.5955 | 1400 | 0.0001 | - |
189
+ | 0.6168 | 1450 | 0.0002 | - |
190
+ | 0.6380 | 1500 | 0.0002 | - |
191
+ | 0.6593 | 1550 | 0.0001 | - |
192
+ | 0.6806 | 1600 | 0.0001 | - |
193
+ | 0.7018 | 1650 | 0.0001 | - |
194
+ | 0.7231 | 1700 | 0.0001 | - |
195
+ | 0.7444 | 1750 | 0.0001 | - |
196
+ | 0.7656 | 1800 | 0.0001 | - |
197
+ | 0.7869 | 1850 | 0.0001 | - |
198
+ | 0.8082 | 1900 | 0.0001 | - |
199
+ | 0.8294 | 1950 | 0.0001 | - |
200
+ | 0.8507 | 2000 | 0.0001 | - |
201
+ | 0.8720 | 2050 | 0.0001 | - |
202
+ | 0.8932 | 2100 | 0.0001 | - |
203
+ | 0.9145 | 2150 | 0.0002 | - |
204
+ | 0.9358 | 2200 | 0.0002 | - |
205
+ | 0.9570 | 2250 | 0.0002 | - |
206
+ | 0.9783 | 2300 | 0.0001 | - |
207
+ | 0.9996 | 2350 | 0.0001 | - |
208
+ | 1.0208 | 2400 | 0.0001 | - |
209
+ | 1.0421 | 2450 | 0.0002 | - |
210
+ | 1.0634 | 2500 | 0.0001 | - |
211
+ | 1.0846 | 2550 | 0.0001 | - |
212
+ | 1.1059 | 2600 | 0.0001 | - |
213
+ | 1.1272 | 2650 | 0.0002 | - |
214
+ | 1.1484 | 2700 | 0.0001 | - |
215
+ | 1.1697 | 2750 | 0.0001 | - |
216
+ | 1.1910 | 2800 | 0.0001 | - |
217
+ | 1.2123 | 2850 | 0.0001 | - |
218
+ | 1.2335 | 2900 | 0.0001 | - |
219
+ | 1.2548 | 2950 | 0.0001 | - |
220
+ | 1.2761 | 3000 | 0.0001 | - |
221
+ | 1.2973 | 3050 | 0.0001 | - |
222
+ | 1.3186 | 3100 | 0.0001 | - |
223
+ | 1.3399 | 3150 | 0.0001 | - |
224
+ | 1.3611 | 3200 | 0.0001 | - |
225
+ | 1.3824 | 3250 | 0.0001 | - |
226
+ | 1.4037 | 3300 | 0.0001 | - |
227
+ | 1.4249 | 3350 | 0.0001 | - |
228
+ | 1.4462 | 3400 | 0.0001 | - |
229
+ | 1.4675 | 3450 | 0.0001 | - |
230
+ | 1.4887 | 3500 | 0.0001 | - |
231
+ | 1.5100 | 3550 | 0.0001 | - |
232
+ | 1.5313 | 3600 | 0.0001 | - |
233
+ | 1.5525 | 3650 | 0.0001 | - |
234
+ | 1.5738 | 3700 | 0.0001 | - |
235
+ | 1.5951 | 3750 | 0.0001 | - |
236
+ | 1.6163 | 3800 | 0.0001 | - |
237
+ | 1.6376 | 3850 | 0.0 | - |
238
+ | 1.6589 | 3900 | 0.0001 | - |
239
+ | 1.6801 | 3950 | 0.0001 | - |
240
+ | 1.7014 | 4000 | 0.0001 | - |
241
+ | 1.7227 | 4050 | 0.0001 | - |
242
+ | 1.7439 | 4100 | 0.0001 | - |
243
+ | 1.7652 | 4150 | 0.0001 | - |
244
+ | 1.7865 | 4200 | 0.0001 | - |
245
+ | 1.8077 | 4250 | 0.0001 | - |
246
+ | 1.8290 | 4300 | 0.0001 | - |
247
+ | 1.8503 | 4350 | 0.0001 | - |
248
+ | 1.8715 | 4400 | 0.0 | - |
249
+ | 1.8928 | 4450 | 0.0001 | - |
250
+ | 1.9141 | 4500 | 0.0001 | - |
251
+ | 1.9353 | 4550 | 0.0001 | - |
252
+ | 1.9566 | 4600 | 0.0001 | - |
253
+ | 1.9779 | 4650 | 0.0001 | - |
254
+ | 1.9991 | 4700 | 0.0001 | - |
255
+
256
+ ### Framework Versions
257
+ - Python: 3.10.16
258
+ - SetFit: 1.0.3
259
+ - Sentence Transformers: 2.7.0
260
+ - Transformers: 4.40.2
261
+ - PyTorch: 2.2.2
262
+ - Datasets: 2.19.1
263
+ - Tokenizers: 0.19.1
264
+
265
+ ## Citation
266
+
267
+ ### BibTeX
268
+ ```bibtex
269
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
270
+ doi = {10.48550/ARXIV.2209.11055},
271
+ url = {https://arxiv.org/abs/2209.11055},
272
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
273
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
274
+ title = {Efficient Few-Shot Learning Without Prompts},
275
+ publisher = {arXiv},
276
+ year = {2022},
277
+ copyright = {Creative Commons Attribution 4.0 International}
278
+ }
279
+ ```
280
+
281
+ <!--
282
+ ## Glossary
283
+
284
+ *Clearly define terms in order to be accessible across audiences.*
285
+ -->
286
+
287
+ <!--
288
+ ## Model Card Authors
289
+
290
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
291
+ -->
292
+
293
+ <!--
294
+ ## Model Card Contact
295
+
296
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
297
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.40.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "Out of Scope",
4
+ "general faq",
5
+ "order tracking",
6
+ "product discoverability",
7
+ "product faq",
8
+ "product policy"
9
+ ],
10
+ "normalize_embeddings": false
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:154e9632969952404d8ccd23af3bdbb6dd2321df6c629ac594e95e35a35ead0a
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e1959de6f02664345c8b8c7668243dcfaa49745ce3ea990ffab554c8c0bc019
3
+ size 38311
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff