Add SetFit model
Browse files- 1_Pooling/config.json +10 -0
- README.md +390 -0
- config.json +24 -0
- config_sentence_transformers.json +9 -0
- config_setfit.json +11 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +59 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: sentence-transformers/paraphrase-mpnet-base-v2
|
| 3 |
+
library_name: setfit
|
| 4 |
+
metrics:
|
| 5 |
+
- accuracy
|
| 6 |
+
pipeline_tag: text-classification
|
| 7 |
+
tags:
|
| 8 |
+
- setfit
|
| 9 |
+
- sentence-transformers
|
| 10 |
+
- text-classification
|
| 11 |
+
- generated_from_setfit_trainer
|
| 12 |
+
widget:
|
| 13 |
+
- text: Do you have the Nike Blazer Mid sacai Snow Beach in size 9?
|
| 14 |
+
- text: How can I adapt K-beauty routines for dry weather?
|
| 15 |
+
- text: I like to listen to classical music
|
| 16 |
+
- text: If this product is for weight management, what is the sub-category?
|
| 17 |
+
- text: How long does it take to receive a refund after returning a product?
|
| 18 |
+
inference: true
|
| 19 |
+
model-index:
|
| 20 |
+
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
| 21 |
+
results:
|
| 22 |
+
- task:
|
| 23 |
+
type: text-classification
|
| 24 |
+
name: Text Classification
|
| 25 |
+
dataset:
|
| 26 |
+
name: Unknown
|
| 27 |
+
type: unknown
|
| 28 |
+
split: test
|
| 29 |
+
metrics:
|
| 30 |
+
- type: accuracy
|
| 31 |
+
value: 0.8711340206185567
|
| 32 |
+
name: Accuracy
|
| 33 |
+
---
|
| 34 |
+
|
| 35 |
+
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
|
| 36 |
+
|
| 37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
| 38 |
+
|
| 39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
| 40 |
+
|
| 41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
| 42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
| 43 |
+
|
| 44 |
+
## Model Details
|
| 45 |
+
|
| 46 |
+
### Model Description
|
| 47 |
+
- **Model Type:** SetFit
|
| 48 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
|
| 49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
| 50 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 51 |
+
- **Number of Classes:** 6 classes
|
| 52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 53 |
+
<!-- - **Language:** Unknown -->
|
| 54 |
+
<!-- - **License:** Unknown -->
|
| 55 |
+
|
| 56 |
+
### Model Sources
|
| 57 |
+
|
| 58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
| 59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
| 60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 61 |
+
|
| 62 |
+
### Model Labels
|
| 63 |
+
| Label | Examples |
|
| 64 |
+
|:------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 65 |
+
| product policy | <ul><li>'Do you offer a gift wrapping service for sneakers?'</li><li>'What are the consequences if my account is suspended or terminated for any reason?'</li><li>'Do you share my personal information with third parties?'</li></ul> |
|
| 66 |
+
| general faq | <ul><li>'Can you explain why Mashru silk is considered more comfortable to wear compared to pure silk sarees?'</li><li>'What are some tips for maximizing the antioxidant content when brewing green tea?'</li><li>'Can you recommend K-beauty products for hot and humid climates?'</li></ul> |
|
| 67 |
+
| product discoverability | <ul><li>'Are there any sarees with Kadwa Weave technique?'</li><li>'cookie boxes with dividers'</li><li>'Are there any products for dry skin?'</li></ul> |
|
| 68 |
+
| Out of Scope | <ul><li>'Is this website secure?'</li><li>'How do you handle intellectual property disputes?'</li><li>'Do you know how to play the piano?'</li></ul> |
|
| 69 |
+
| order tracking | <ul><li>'I want to deliver candle supplies to Jaipur, how many days will it take to deliver?'</li><li>'I want to deliver bags to Pune, how many days will it take to deliver?'</li><li>'I need to change the delivery address for my recent order, how can I do that?'</li></ul> |
|
| 70 |
+
| product faq | <ul><li>'Does this product help with dark spots?'</li><li>'3. Is this product currently in stock?'</li><li>'Is the product in stock?'</li></ul> |
|
| 71 |
+
|
| 72 |
+
## Evaluation
|
| 73 |
+
|
| 74 |
+
### Metrics
|
| 75 |
+
| Label | Accuracy |
|
| 76 |
+
|:--------|:---------|
|
| 77 |
+
| **all** | 0.8711 |
|
| 78 |
+
|
| 79 |
+
## Uses
|
| 80 |
+
|
| 81 |
+
### Direct Use for Inference
|
| 82 |
+
|
| 83 |
+
First install the SetFit library:
|
| 84 |
+
|
| 85 |
+
```bash
|
| 86 |
+
pip install setfit
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
Then you can load this model and run inference.
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
from setfit import SetFitModel
|
| 93 |
+
|
| 94 |
+
# Download from the 🤗 Hub
|
| 95 |
+
model = SetFitModel.from_pretrained("setfit_model_id")
|
| 96 |
+
# Run inference
|
| 97 |
+
preds = model("I like to listen to classical music")
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
<!--
|
| 101 |
+
### Downstream Use
|
| 102 |
+
|
| 103 |
+
*List how someone could finetune this model on their own dataset.*
|
| 104 |
+
-->
|
| 105 |
+
|
| 106 |
+
<!--
|
| 107 |
+
### Out-of-Scope Use
|
| 108 |
+
|
| 109 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 110 |
+
-->
|
| 111 |
+
|
| 112 |
+
<!--
|
| 113 |
+
## Bias, Risks and Limitations
|
| 114 |
+
|
| 115 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 116 |
+
-->
|
| 117 |
+
|
| 118 |
+
<!--
|
| 119 |
+
### Recommendations
|
| 120 |
+
|
| 121 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 122 |
+
-->
|
| 123 |
+
|
| 124 |
+
## Training Details
|
| 125 |
+
|
| 126 |
+
### Training Set Metrics
|
| 127 |
+
| Training set | Min | Median | Max |
|
| 128 |
+
|:-------------|:----|:-------|:----|
|
| 129 |
+
| Word count | 4 | 10.66 | 28 |
|
| 130 |
+
|
| 131 |
+
| Label | Training Sample Count |
|
| 132 |
+
|:------------------------|:----------------------|
|
| 133 |
+
| Out of Scope | 50 |
|
| 134 |
+
| general faq | 50 |
|
| 135 |
+
| order tracking | 50 |
|
| 136 |
+
| product discoverability | 50 |
|
| 137 |
+
| product faq | 50 |
|
| 138 |
+
| product policy | 50 |
|
| 139 |
+
|
| 140 |
+
### Training Hyperparameters
|
| 141 |
+
- batch_size: (16, 16)
|
| 142 |
+
- num_epochs: (2, 2)
|
| 143 |
+
- max_steps: -1
|
| 144 |
+
- sampling_strategy: oversampling
|
| 145 |
+
- body_learning_rate: (2e-05, 1e-05)
|
| 146 |
+
- head_learning_rate: 0.01
|
| 147 |
+
- loss: CosineSimilarityLoss
|
| 148 |
+
- distance_metric: cosine_distance
|
| 149 |
+
- margin: 0.25
|
| 150 |
+
- end_to_end: False
|
| 151 |
+
- use_amp: False
|
| 152 |
+
- warmup_proportion: 0.1
|
| 153 |
+
- seed: 42
|
| 154 |
+
- eval_max_steps: -1
|
| 155 |
+
- load_best_model_at_end: True
|
| 156 |
+
|
| 157 |
+
### Training Results
|
| 158 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
| 159 |
+
|:------:|:----:|:-------------:|:---------------:|
|
| 160 |
+
| 0.0002 | 1 | 0.2592 | - |
|
| 161 |
+
| 0.0107 | 50 | 0.2424 | - |
|
| 162 |
+
| 0.0213 | 100 | 0.1506 | - |
|
| 163 |
+
| 0.0320 | 150 | 0.222 | - |
|
| 164 |
+
| 0.0427 | 200 | 0.1227 | - |
|
| 165 |
+
| 0.0533 | 250 | 0.1801 | - |
|
| 166 |
+
| 0.0640 | 300 | 0.1111 | - |
|
| 167 |
+
| 0.0747 | 350 | 0.0346 | - |
|
| 168 |
+
| 0.0853 | 400 | 0.0313 | - |
|
| 169 |
+
| 0.0960 | 450 | 0.0048 | - |
|
| 170 |
+
| 0.1067 | 500 | 0.0023 | - |
|
| 171 |
+
| 0.1173 | 550 | 0.0018 | - |
|
| 172 |
+
| 0.1280 | 600 | 0.0133 | - |
|
| 173 |
+
| 0.1387 | 650 | 0.0008 | - |
|
| 174 |
+
| 0.1493 | 700 | 0.0006 | - |
|
| 175 |
+
| 0.1600 | 750 | 0.0005 | - |
|
| 176 |
+
| 0.1706 | 800 | 0.0008 | - |
|
| 177 |
+
| 0.1813 | 850 | 0.0007 | - |
|
| 178 |
+
| 0.1920 | 900 | 0.0006 | - |
|
| 179 |
+
| 0.2026 | 950 | 0.0006 | - |
|
| 180 |
+
| 0.2133 | 1000 | 0.0003 | - |
|
| 181 |
+
| 0.2240 | 1050 | 0.0026 | - |
|
| 182 |
+
| 0.2346 | 1100 | 0.0004 | - |
|
| 183 |
+
| 0.2453 | 1150 | 0.0004 | - |
|
| 184 |
+
| 0.2560 | 1200 | 0.0004 | - |
|
| 185 |
+
| 0.2666 | 1250 | 0.0005 | - |
|
| 186 |
+
| 0.2773 | 1300 | 0.0005 | - |
|
| 187 |
+
| 0.2880 | 1350 | 0.0003 | - |
|
| 188 |
+
| 0.2986 | 1400 | 0.0001 | - |
|
| 189 |
+
| 0.3093 | 1450 | 0.0001 | - |
|
| 190 |
+
| 0.3200 | 1500 | 0.0002 | - |
|
| 191 |
+
| 0.3306 | 1550 | 0.0002 | - |
|
| 192 |
+
| 0.3413 | 1600 | 0.0002 | - |
|
| 193 |
+
| 0.3520 | 1650 | 0.0001 | - |
|
| 194 |
+
| 0.3626 | 1700 | 0.0004 | - |
|
| 195 |
+
| 0.3733 | 1750 | 0.0002 | - |
|
| 196 |
+
| 0.3840 | 1800 | 0.0005 | - |
|
| 197 |
+
| 0.3946 | 1850 | 0.0002 | - |
|
| 198 |
+
| 0.4053 | 1900 | 0.0002 | - |
|
| 199 |
+
| 0.4160 | 1950 | 0.0001 | - |
|
| 200 |
+
| 0.4266 | 2000 | 0.0001 | - |
|
| 201 |
+
| 0.4373 | 2050 | 0.0001 | - |
|
| 202 |
+
| 0.4480 | 2100 | 0.0001 | - |
|
| 203 |
+
| 0.4586 | 2150 | 0.0001 | - |
|
| 204 |
+
| 0.4693 | 2200 | 0.0002 | - |
|
| 205 |
+
| 0.4799 | 2250 | 0.0048 | - |
|
| 206 |
+
| 0.4906 | 2300 | 0.0001 | - |
|
| 207 |
+
| 0.5013 | 2350 | 0.001 | - |
|
| 208 |
+
| 0.5119 | 2400 | 0.0002 | - |
|
| 209 |
+
| 0.5226 | 2450 | 0.0002 | - |
|
| 210 |
+
| 0.5333 | 2500 | 0.0001 | - |
|
| 211 |
+
| 0.5439 | 2550 | 0.0001 | - |
|
| 212 |
+
| 0.5546 | 2600 | 0.0001 | - |
|
| 213 |
+
| 0.5653 | 2650 | 0.0001 | - |
|
| 214 |
+
| 0.5759 | 2700 | 0.0001 | - |
|
| 215 |
+
| 0.5866 | 2750 | 0.0001 | - |
|
| 216 |
+
| 0.5973 | 2800 | 0.0001 | - |
|
| 217 |
+
| 0.6079 | 2850 | 0.0001 | - |
|
| 218 |
+
| 0.6186 | 2900 | 0.0001 | - |
|
| 219 |
+
| 0.6293 | 2950 | 0.0001 | - |
|
| 220 |
+
| 0.6399 | 3000 | 0.0001 | - |
|
| 221 |
+
| 0.6506 | 3050 | 0.0001 | - |
|
| 222 |
+
| 0.6613 | 3100 | 0.0001 | - |
|
| 223 |
+
| 0.6719 | 3150 | 0.0001 | - |
|
| 224 |
+
| 0.6826 | 3200 | 0.0001 | - |
|
| 225 |
+
| 0.6933 | 3250 | 0.0001 | - |
|
| 226 |
+
| 0.7039 | 3300 | 0.0001 | - |
|
| 227 |
+
| 0.7146 | 3350 | 0.0001 | - |
|
| 228 |
+
| 0.7253 | 3400 | 0.0001 | - |
|
| 229 |
+
| 0.7359 | 3450 | 0.0001 | - |
|
| 230 |
+
| 0.7466 | 3500 | 0.0001 | - |
|
| 231 |
+
| 0.7573 | 3550 | 0.0001 | - |
|
| 232 |
+
| 0.7679 | 3600 | 0.0001 | - |
|
| 233 |
+
| 0.7786 | 3650 | 0.0001 | - |
|
| 234 |
+
| 0.7892 | 3700 | 0.0001 | - |
|
| 235 |
+
| 0.7999 | 3750 | 0.0001 | - |
|
| 236 |
+
| 0.8106 | 3800 | 0.0001 | - |
|
| 237 |
+
| 0.8212 | 3850 | 0.0 | - |
|
| 238 |
+
| 0.8319 | 3900 | 0.0001 | - |
|
| 239 |
+
| 0.8426 | 3950 | 0.0001 | - |
|
| 240 |
+
| 0.8532 | 4000 | 0.0001 | - |
|
| 241 |
+
| 0.8639 | 4050 | 0.0001 | - |
|
| 242 |
+
| 0.8746 | 4100 | 0.0001 | - |
|
| 243 |
+
| 0.8852 | 4150 | 0.0 | - |
|
| 244 |
+
| 0.8959 | 4200 | 0.0001 | - |
|
| 245 |
+
| 0.9066 | 4250 | 0.0001 | - |
|
| 246 |
+
| 0.9172 | 4300 | 0.0001 | - |
|
| 247 |
+
| 0.9279 | 4350 | 0.0001 | - |
|
| 248 |
+
| 0.9386 | 4400 | 0.0001 | - |
|
| 249 |
+
| 0.9492 | 4450 | 0.0001 | - |
|
| 250 |
+
| 0.9599 | 4500 | 0.0001 | - |
|
| 251 |
+
| 0.9706 | 4550 | 0.0001 | - |
|
| 252 |
+
| 0.9812 | 4600 | 0.0 | - |
|
| 253 |
+
| 0.9919 | 4650 | 0.0001 | - |
|
| 254 |
+
| 1.0026 | 4700 | 0.0 | - |
|
| 255 |
+
| 1.0132 | 4750 | 0.0001 | - |
|
| 256 |
+
| 1.0239 | 4800 | 0.0001 | - |
|
| 257 |
+
| 1.0346 | 4850 | 0.0001 | - |
|
| 258 |
+
| 1.0452 | 4900 | 0.0001 | - |
|
| 259 |
+
| 1.0559 | 4950 | 0.0001 | - |
|
| 260 |
+
| 1.0666 | 5000 | 0.0 | - |
|
| 261 |
+
| 1.0772 | 5050 | 0.0 | - |
|
| 262 |
+
| 1.0879 | 5100 | 0.0001 | - |
|
| 263 |
+
| 1.0985 | 5150 | 0.0 | - |
|
| 264 |
+
| 1.1092 | 5200 | 0.0 | - |
|
| 265 |
+
| 1.1199 | 5250 | 0.0 | - |
|
| 266 |
+
| 1.1305 | 5300 | 0.0001 | - |
|
| 267 |
+
| 1.1412 | 5350 | 0.0001 | - |
|
| 268 |
+
| 1.1519 | 5400 | 0.0 | - |
|
| 269 |
+
| 1.1625 | 5450 | 0.0001 | - |
|
| 270 |
+
| 1.1732 | 5500 | 0.0001 | - |
|
| 271 |
+
| 1.1839 | 5550 | 0.0002 | - |
|
| 272 |
+
| 1.1945 | 5600 | 0.0 | - |
|
| 273 |
+
| 1.2052 | 5650 | 0.0 | - |
|
| 274 |
+
| 1.2159 | 5700 | 0.0 | - |
|
| 275 |
+
| 1.2265 | 5750 | 0.0 | - |
|
| 276 |
+
| 1.2372 | 5800 | 0.0001 | - |
|
| 277 |
+
| 1.2479 | 5850 | 0.0001 | - |
|
| 278 |
+
| 1.2585 | 5900 | 0.0001 | - |
|
| 279 |
+
| 1.2692 | 5950 | 0.0 | - |
|
| 280 |
+
| 1.2799 | 6000 | 0.0 | - |
|
| 281 |
+
| 1.2905 | 6050 | 0.0 | - |
|
| 282 |
+
| 1.3012 | 6100 | 0.0001 | - |
|
| 283 |
+
| 1.3119 | 6150 | 0.0 | - |
|
| 284 |
+
| 1.3225 | 6200 | 0.0 | - |
|
| 285 |
+
| 1.3332 | 6250 | 0.0 | - |
|
| 286 |
+
| 1.3439 | 6300 | 0.0 | - |
|
| 287 |
+
| 1.3545 | 6350 | 0.0 | - |
|
| 288 |
+
| 1.3652 | 6400 | 0.0 | - |
|
| 289 |
+
| 1.3759 | 6450 | 0.0 | - |
|
| 290 |
+
| 1.3865 | 6500 | 0.0 | - |
|
| 291 |
+
| 1.3972 | 6550 | 0.0 | - |
|
| 292 |
+
| 1.4078 | 6600 | 0.0 | - |
|
| 293 |
+
| 1.4185 | 6650 | 0.0 | - |
|
| 294 |
+
| 1.4292 | 6700 | 0.0 | - |
|
| 295 |
+
| 1.4398 | 6750 | 0.0 | - |
|
| 296 |
+
| 1.4505 | 6800 | 0.0 | - |
|
| 297 |
+
| 1.4612 | 6850 | 0.0 | - |
|
| 298 |
+
| 1.4718 | 6900 | 0.0001 | - |
|
| 299 |
+
| 1.4825 | 6950 | 0.0001 | - |
|
| 300 |
+
| 1.4932 | 7000 | 0.0 | - |
|
| 301 |
+
| 1.5038 | 7050 | 0.0 | - |
|
| 302 |
+
| 1.5145 | 7100 | 0.0001 | - |
|
| 303 |
+
| 1.5252 | 7150 | 0.0001 | - |
|
| 304 |
+
| 1.5358 | 7200 | 0.0001 | - |
|
| 305 |
+
| 1.5465 | 7250 | 0.0001 | - |
|
| 306 |
+
| 1.5572 | 7300 | 0.0 | - |
|
| 307 |
+
| 1.5678 | 7350 | 0.0 | - |
|
| 308 |
+
| 1.5785 | 7400 | 0.0 | - |
|
| 309 |
+
| 1.5892 | 7450 | 0.0001 | - |
|
| 310 |
+
| 1.5998 | 7500 | 0.0 | - |
|
| 311 |
+
| 1.6105 | 7550 | 0.0 | - |
|
| 312 |
+
| 1.6212 | 7600 | 0.0 | - |
|
| 313 |
+
| 1.6318 | 7650 | 0.0 | - |
|
| 314 |
+
| 1.6425 | 7700 | 0.0 | - |
|
| 315 |
+
| 1.6532 | 7750 | 0.0 | - |
|
| 316 |
+
| 1.6638 | 7800 | 0.0 | - |
|
| 317 |
+
| 1.6745 | 7850 | 0.0 | - |
|
| 318 |
+
| 1.6852 | 7900 | 0.0 | - |
|
| 319 |
+
| 1.6958 | 7950 | 0.0 | - |
|
| 320 |
+
| 1.7065 | 8000 | 0.0 | - |
|
| 321 |
+
| 1.7172 | 8050 | 0.0 | - |
|
| 322 |
+
| 1.7278 | 8100 | 0.0 | - |
|
| 323 |
+
| 1.7385 | 8150 | 0.0001 | - |
|
| 324 |
+
| 1.7491 | 8200 | 0.0 | - |
|
| 325 |
+
| 1.7598 | 8250 | 0.0 | - |
|
| 326 |
+
| 1.7705 | 8300 | 0.0 | - |
|
| 327 |
+
| 1.7811 | 8350 | 0.0001 | - |
|
| 328 |
+
| 1.7918 | 8400 | 0.0 | - |
|
| 329 |
+
| 1.8025 | 8450 | 0.0 | - |
|
| 330 |
+
| 1.8131 | 8500 | 0.0 | - |
|
| 331 |
+
| 1.8238 | 8550 | 0.0 | - |
|
| 332 |
+
| 1.8345 | 8600 | 0.0001 | - |
|
| 333 |
+
| 1.8451 | 8650 | 0.0 | - |
|
| 334 |
+
| 1.8558 | 8700 | 0.0 | - |
|
| 335 |
+
| 1.8665 | 8750 | 0.0001 | - |
|
| 336 |
+
| 1.8771 | 8800 | 0.0 | - |
|
| 337 |
+
| 1.8878 | 8850 | 0.0 | - |
|
| 338 |
+
| 1.8985 | 8900 | 0.0 | - |
|
| 339 |
+
| 1.9091 | 8950 | 0.0001 | - |
|
| 340 |
+
| 1.9198 | 9000 | 0.0 | - |
|
| 341 |
+
| 1.9305 | 9050 | 0.0 | - |
|
| 342 |
+
| 1.9411 | 9100 | 0.0 | - |
|
| 343 |
+
| 1.9518 | 9150 | 0.0 | - |
|
| 344 |
+
| 1.9625 | 9200 | 0.0 | - |
|
| 345 |
+
| 1.9731 | 9250 | 0.0 | - |
|
| 346 |
+
| 1.9838 | 9300 | 0.0 | - |
|
| 347 |
+
| 1.9945 | 9350 | 0.0 | - |
|
| 348 |
+
|
| 349 |
+
### Framework Versions
|
| 350 |
+
- Python: 3.10.16
|
| 351 |
+
- SetFit: 1.0.3
|
| 352 |
+
- Sentence Transformers: 2.7.0
|
| 353 |
+
- Transformers: 4.40.2
|
| 354 |
+
- PyTorch: 2.2.2
|
| 355 |
+
- Datasets: 2.19.1
|
| 356 |
+
- Tokenizers: 0.19.1
|
| 357 |
+
|
| 358 |
+
## Citation
|
| 359 |
+
|
| 360 |
+
### BibTeX
|
| 361 |
+
```bibtex
|
| 362 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
| 363 |
+
doi = {10.48550/ARXIV.2209.11055},
|
| 364 |
+
url = {https://arxiv.org/abs/2209.11055},
|
| 365 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
| 366 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 367 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
| 368 |
+
publisher = {arXiv},
|
| 369 |
+
year = {2022},
|
| 370 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
| 371 |
+
}
|
| 372 |
+
```
|
| 373 |
+
|
| 374 |
+
<!--
|
| 375 |
+
## Glossary
|
| 376 |
+
|
| 377 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 378 |
+
-->
|
| 379 |
+
|
| 380 |
+
<!--
|
| 381 |
+
## Model Card Authors
|
| 382 |
+
|
| 383 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 384 |
+
-->
|
| 385 |
+
|
| 386 |
+
<!--
|
| 387 |
+
## Model Card Contact
|
| 388 |
+
|
| 389 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 390 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"MPNetModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 3072,
|
| 14 |
+
"layer_norm_eps": 1e-05,
|
| 15 |
+
"max_position_embeddings": 514,
|
| 16 |
+
"model_type": "mpnet",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 12,
|
| 19 |
+
"pad_token_id": 1,
|
| 20 |
+
"relative_attention_num_buckets": 32,
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"transformers_version": "4.40.2",
|
| 23 |
+
"vocab_size": 30527
|
| 24 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "2.0.0",
|
| 4 |
+
"transformers": "4.7.0",
|
| 5 |
+
"pytorch": "1.9.0+cu102"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null
|
| 9 |
+
}
|
config_setfit.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"labels": [
|
| 3 |
+
"Out of Scope",
|
| 4 |
+
"general faq",
|
| 5 |
+
"order tracking",
|
| 6 |
+
"product discoverability",
|
| 7 |
+
"product faq",
|
| 8 |
+
"product policy"
|
| 9 |
+
],
|
| 10 |
+
"normalize_embeddings": false
|
| 11 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b3000324e561d558a68b0639ebe19d47d5f7186b1b3b98bb1a6ccd4315f4dd8
|
| 3 |
+
size 437967672
|
model_head.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c7b3b75cc99c2d45f4ba420739cad3e8df412d67b3212eafd46cc0489b023a19
|
| 3 |
+
size 38311
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "[UNK]",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"104": {
|
| 28 |
+
"content": "[UNK]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"30526": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"do_basic_tokenize": true,
|
| 48 |
+
"do_lower_case": true,
|
| 49 |
+
"eos_token": "</s>",
|
| 50 |
+
"mask_token": "<mask>",
|
| 51 |
+
"model_max_length": 512,
|
| 52 |
+
"never_split": null,
|
| 53 |
+
"pad_token": "<pad>",
|
| 54 |
+
"sep_token": "</s>",
|
| 55 |
+
"strip_accents": null,
|
| 56 |
+
"tokenize_chinese_chars": true,
|
| 57 |
+
"tokenizer_class": "MPNetTokenizer",
|
| 58 |
+
"unk_token": "[UNK]"
|
| 59 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|