Shoriful025 commited on
Commit
2a216c7
·
verified ·
1 Parent(s): c0f7cd9

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -0
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - crypto-prediction
4
+ - time-series
5
+ - bert
6
+ license: apache-2.0
7
+ datasets:
8
+ - custom-crypto-news
9
+ metrics:
10
+ - f1-score
11
+ model-index:
12
+ - name: crypto-trend-predictor
13
+ results:
14
+ - task:
15
+ type: text-classification
16
+ dataset:
17
+ name: custom-crypto-news
18
+ type: custom
19
+ metrics:
20
+ - name: F1-Score
21
+ type: f1
22
+ value: 0.85
23
+ ---
24
+
25
+ # Crypto Trend Predictor
26
+
27
+ ## Overview
28
+
29
+ This BERT-based model predicts cryptocurrency market trends (bearish, bullish, or neutral) based on news articles, tweets, or market summaries. It was fine-tuned on a dataset of historical crypto news and price movements.
30
+
31
+ ## Model Architecture
32
+
33
+ - Base Model: BERT-base-uncased
34
+ - Layers: 12
35
+ - Hidden Size: 768
36
+ - Attention Heads: 12
37
+ - Fine-tuned for multi-class classification (bearish/bullish/neutral)
38
+
39
+ ## Intended Use
40
+
41
+ Ideal for analyzing crypto-related text to forecast short-term market trends, assisting traders or analysts in decision-making.
42
+
43
+ ## Limitations
44
+
45
+ - Predictions are based on text sentiment and may not account for external factors like regulations or economic events.
46
+ - Performance degrades on non-English text or highly technical jargon not seen in training.
47
+ - Not financial advice; use at your own risk.
48
+
49
+ ## Example Code
50
+
51
+ ```python
52
+ from transformers import pipeline
53
+
54
+ predictor = pipeline("text-classification", model="user/crypto-trend-predictor")
55
+ result = predictor("Bitcoin surges after ETF approval.")
56
+ print(result)
57
+ # [{'label': 'BULLISH', 'score': 0.95}]