Tasfiya025 commited on
Commit
719ee05
·
verified ·
1 Parent(s): 00628c4

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # NanoGPT-Abstract-Generator
2
+
3
+ ## Overview
4
+ `NanoGPT-Abstract-Generator` is a smaller, more efficient version of the GPT-2 architecture fine-tuned for generating concise, high-quality abstracts from a provided input sentence or a short document prompt. It is designed for low-latency inference on general-purpose text generation tasks.
5
+
6
+ This model is a strong choice for applications requiring quick, coherent, and contextually relevant text snippets without the massive computational overhead of larger models like GPT-3 or full-sized GPT-2 variants.
7
+
8
+ ## Model Architecture
9
+ The model is based on the **GPT-2** decoder-only architecture, but significantly scaled down for efficiency (hence 'NanoGPT').
10
+ * **Base Model:** GPT-2 Decoder
11
+ * **Task:** Causal Language Modeling (`GPT2LMHeadModel`)
12
+ * **Size Reduction:** $n_{layer}=8$ (vs. 12 for GPT-2 Base), $n_{embd}=768$.
13
+ * **Parameters:** Approximately 100 Million parameters (highly optimized).
14
+ * **Context Window (`n_ctx`):** 512 tokens.
15
+ * **Tokenizer:** GPT-2 Tokenizer (BPE vocabulary, 50257 tokens).
16
+
17
+ ## Intended Use
18
+ * **Abstractive Summarization:** Generating short, descriptive summaries (abstracts) for scientific papers, articles, or blog posts based on the first few sentences.
19
+ * **Creative Prompting:** Generating short stories, poem stanzas, or marketing copy from a seed phrase.
20
+ * **Chatbot Responses:** Providing fluent, contextualized, short-form responses in a conversational agent.
21
+ * **Rapid Prototyping:** Serving as a fast, accessible, and resource-friendly generator for local testing and development.
22
+
23
+ ## Limitations
24
+ * **Coherence over Long Sequences:** Due to its reduced size and context window (512 tokens), coherence may degrade rapidly for generations exceeding 200 tokens.
25
+ * **Factual Accuracy (Hallucination):** Like all auto-regressive language models, it can generate text that sounds convincing but is factually incorrect or nonsensical.
26
+ * **Safety/Bias:** The model inherits biases present in its pre-training data. Care must be taken in deployment to filter or mitigate harmful outputs.
27
+
28
+ ## Example Code (PyTorch/Transformers Pipeline)
29
+
30
+ ```python
31
+ from transformers import pipeline
32
+
33
+ model_name = "NLP/NanoGPT-Abstract-Generator"
34
+ # The 'text-generation' pipeline handles the model and tokenizer automatically
35
+ generator = pipeline("text-generation", model=model_name)
36
+
37
+ prompt = "The recent advancements in quantum computing have shifted the paradigm"
38
+
39
+ # Generate text with specific decoding parameters
40
+ output = generator(
41
+ prompt,
42
+ max_length=50,
43
+ num_return_sequences=1,
44
+ temperature=0.7, # Controls randomness
45
+ top_k=50, # Sampling top K tokens
46
+ do_sample=True, # Enable sampling
47
+ pad_token_id=generator.tokenizer.eos_token_id # Set padding to EOS token
48
+ )
49
+
50
+ print(f"Prompt: {prompt}\n--- Abstract ---\n{output[0]['generated_text']}")
51
+
52
+ # Example Output:
53
+ # "The recent advancements in quantum computing have shifted the paradigm of theoretical cryptography, making several historically secure algorithms vulnerable to polynomial-time attacks. Researchers are now prioritizing the development of post-quantum cryptography protocols."