--- license: mit library_name: transformers pipeline_tag: text-generation --- # Training Language Models To Explain Their Own Computations This is a **Llama-3.1-8B-Instruct** explainer model fine-tuned for the **input ablations** task for the **Llama-3.1-8B-Instruct** target model, as described in [this paper](https://arxiv.org/abs/2511.08579). In the input ablations task, explainer models are trained to predict how removing "hint" tokens from an MMLU prompt with a hint changes the output of Llama-3.1-8B-Instruct. This helps in understanding the causal relationships between input components and model behavior. [Repository](https://github.com/TransluceAI/introspective-interp) | [Paper](https://arxiv.org/abs/2511.08579) ## Sample Usage To evaluate the explainer model on the input ablation task, you can use the evaluation script provided in the GitHub repository. ```bash uv run --env-file .env evaluate.py \ --config config/input_ablation/instruct_instruct_hint.yaml \ --target_model_path meta-llama/Llama-3.1-8B-Instruct \ --task hint_attribution \ --model_path Transluce/input_ablation_llama3.1_8b_instruct_llama3.1_8b_instruct \ --output_dir /PATH/TO/RESULTS/ \ --batch_size 64 ``` ## Citation ```bibtex @misc{li2025traininglanguagemodelsexplain, title={Training Language Models to Explain Their Own Computations}, author={Belinda Z. Li and Zifan Carl Guo and Vincent Huang and Jacob Steinhardt and Jacob Andreas}, year={2025}, eprint={2511.08579}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2511.08579}, } ```