Update README.md
Browse files
README.md
CHANGED
|
@@ -34,16 +34,16 @@ model-index:
|
|
| 34 |
metrics:
|
| 35 |
- name: F1
|
| 36 |
type: f1
|
| 37 |
-
value: 0.
|
| 38 |
- name: Precision
|
| 39 |
type: precision
|
| 40 |
value: 0.960
|
| 41 |
- name: Recall
|
| 42 |
type: recall
|
| 43 |
-
value: 0.
|
| 44 |
- name: Accuracy
|
| 45 |
type: accuracy
|
| 46 |
-
value: 0.
|
| 47 |
- task:
|
| 48 |
name: Multi-label Text Classification
|
| 49 |
type: text-classification
|
|
@@ -55,16 +55,16 @@ model-index:
|
|
| 55 |
metrics:
|
| 56 |
- name: F1
|
| 57 |
type: f1
|
| 58 |
-
value: 0.
|
| 59 |
- name: Precision
|
| 60 |
type: precision
|
| 61 |
-
value: 0.
|
| 62 |
- name: Recall
|
| 63 |
type: recall
|
| 64 |
-
value: 0.
|
| 65 |
- name: Accuracy
|
| 66 |
type: accuracy
|
| 67 |
-
value: 0.
|
| 68 |
widget:
|
| 69 |
- text: "Goedemiddag, ik heb al drie keer gebeld over mijn uitkering en krijg geen duidelijkheid."
|
| 70 |
---
|
|
@@ -81,7 +81,7 @@ Trained with a combined objective: alpha · (1 − Soft‑F1) + (1 − alpha) ·
|
|
| 81 |
## Overview
|
| 82 |
- Encoder: mmBERT‑base (multilingual)
|
| 83 |
- Heads: 2× MLP (Linear → Dropout → ReLU → Linear)
|
| 84 |
-
- Labels:
|
| 85 |
- Task: Multi‑label classification (sigmoid per class)
|
| 86 |
- Thresholds: Disabled (fixed 0.5 used for evaluation/inference)
|
| 87 |
|
|
@@ -90,12 +90,12 @@ Trained with a combined objective: alpha · (1 − Soft‑F1) + (1 − alpha) ·
|
|
| 90 |
- Useful for analytics, routing, and trend insights. Not intended for legal or benefit decisions without human review.
|
| 91 |
|
| 92 |
## Training Data
|
| 93 |
-
- Source: `UWV/wim-synthetic-data-rd` (train split)
|
| 94 |
-
- Samples:
|
| 95 |
-
- Labels:
|
| 96 |
-
- Avg labels per sample: onderwerp 1.
|
| 97 |
-
- Shapes: onderwerp (
|
| 98 |
-
- Train/Val split:
|
| 99 |
|
| 100 |
## Training Setup
|
| 101 |
- Date: 2025‑10‑20
|
|
@@ -120,18 +120,18 @@ Trained with a combined objective: alpha · (1 − Soft‑F1) + (1 − alpha) ·
|
|
| 120 |
## Metrics
|
| 121 |
Final validation (500 samples):
|
| 122 |
- Onderwerp:
|
| 123 |
-
- Accuracy: 99.
|
| 124 |
- Precision: 0.960
|
| 125 |
-
- Recall: 0.
|
| 126 |
-
- F1: 0.
|
| 127 |
- Beleving:
|
| 128 |
-
- Accuracy: 97.
|
| 129 |
-
- Precision: 0.
|
| 130 |
-
- Recall: 0.
|
| 131 |
-
- F1: 0.
|
| 132 |
- Combined:
|
| 133 |
-
- Average Accuracy: 98.
|
| 134 |
-
- Average F1: 0.
|
| 135 |
|
| 136 |
## Saved Artifacts
|
| 137 |
- HF‑compatible files:
|
|
|
|
| 34 |
metrics:
|
| 35 |
- name: F1
|
| 36 |
type: f1
|
| 37 |
+
value: 0.936
|
| 38 |
- name: Precision
|
| 39 |
type: precision
|
| 40 |
value: 0.960
|
| 41 |
- name: Recall
|
| 42 |
type: recall
|
| 43 |
+
value: 0.914
|
| 44 |
- name: Accuracy
|
| 45 |
type: accuracy
|
| 46 |
+
value: 0.997
|
| 47 |
- task:
|
| 48 |
name: Multi-label Text Classification
|
| 49 |
type: text-classification
|
|
|
|
| 55 |
metrics:
|
| 56 |
- name: F1
|
| 57 |
type: f1
|
| 58 |
+
value: 0.780
|
| 59 |
- name: Precision
|
| 60 |
type: precision
|
| 61 |
+
value: 0.837
|
| 62 |
- name: Recall
|
| 63 |
type: recall
|
| 64 |
+
value: 0.729
|
| 65 |
- name: Accuracy
|
| 66 |
type: accuracy
|
| 67 |
+
value: 0.975
|
| 68 |
widget:
|
| 69 |
- text: "Goedemiddag, ik heb al drie keer gebeld over mijn uitkering en krijg geen duidelijkheid."
|
| 70 |
---
|
|
|
|
| 81 |
## Overview
|
| 82 |
- Encoder: mmBERT‑base (multilingual)
|
| 83 |
- Heads: 2× MLP (Linear → Dropout → ReLU → Linear)
|
| 84 |
+
- Labels: 65 onderwerp, 33 beleving
|
| 85 |
- Task: Multi‑label classification (sigmoid per class)
|
| 86 |
- Thresholds: Disabled (fixed 0.5 used for evaluation/inference)
|
| 87 |
|
|
|
|
| 90 |
- Useful for analytics, routing, and trend insights. Not intended for legal or benefit decisions without human review.
|
| 91 |
|
| 92 |
## Training Data
|
| 93 |
+
- Source: `UWV/wim-synthetic-data-rd` (train split) + `UWV/wim_synthetic_data_for_testing_split_labels` (train split, 3,500 samples)
|
| 94 |
+
- Samples: 12,491
|
| 95 |
+
- Labels: 65 onderwerp, 33 beleving
|
| 96 |
+
- Avg labels per sample: onderwerp 1.85, beleving 2.08
|
| 97 |
+
- Shapes: onderwerp (12491, 65), beleving (12491, 33)
|
| 98 |
+
- Train/Val split: 11,866 / 625
|
| 99 |
|
| 100 |
## Training Setup
|
| 101 |
- Date: 2025‑10‑20
|
|
|
|
| 120 |
## Metrics
|
| 121 |
Final validation (500 samples):
|
| 122 |
- Onderwerp:
|
| 123 |
+
- Accuracy: 99.7%
|
| 124 |
- Precision: 0.960
|
| 125 |
+
- Recall: 0.914
|
| 126 |
+
- F1: 0.936
|
| 127 |
- Beleving:
|
| 128 |
+
- Accuracy: 97.5%
|
| 129 |
+
- Precision: 0.837
|
| 130 |
+
- Recall: 0.729
|
| 131 |
+
- F1: 0.780
|
| 132 |
- Combined:
|
| 133 |
+
- Average Accuracy: 98.6%
|
| 134 |
+
- Average F1: 0.858
|
| 135 |
|
| 136 |
## Saved Artifacts
|
| 137 |
- HF‑compatible files:
|