yhavinga commited on
Commit
0816cef
·
1 Parent(s): 669759e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -23
README.md CHANGED
@@ -34,16 +34,16 @@ model-index:
34
  metrics:
35
  - name: F1
36
  type: f1
37
- value: 0.932
38
  - name: Precision
39
  type: precision
40
  value: 0.960
41
  - name: Recall
42
  type: recall
43
- value: 0.905
44
  - name: Accuracy
45
  type: accuracy
46
- value: 0.998
47
  - task:
48
  name: Multi-label Text Classification
49
  type: text-classification
@@ -55,16 +55,16 @@ model-index:
55
  metrics:
56
  - name: F1
57
  type: f1
58
- value: 0.789
59
  - name: Precision
60
  type: precision
61
- value: 0.859
62
  - name: Recall
63
  type: recall
64
- value: 0.730
65
  - name: Accuracy
66
  type: accuracy
67
- value: 0.971
68
  widget:
69
  - text: "Goedemiddag, ik heb al drie keer gebeld over mijn uitkering en krijg geen duidelijkheid."
70
  ---
@@ -81,7 +81,7 @@ Trained with a combined objective: alpha · (1 − Soft‑F1) + (1 − alpha) ·
81
  ## Overview
82
  - Encoder: mmBERT‑base (multilingual)
83
  - Heads: 2× MLP (Linear → Dropout → ReLU → Linear)
84
- - Labels: 96 onderwerp, 26 beleving
85
  - Task: Multi‑label classification (sigmoid per class)
86
  - Thresholds: Disabled (fixed 0.5 used for evaluation/inference)
87
 
@@ -90,12 +90,12 @@ Trained with a combined objective: alpha · (1 − Soft‑F1) + (1 − alpha) ·
90
  - Useful for analytics, routing, and trend insights. Not intended for legal or benefit decisions without human review.
91
 
92
  ## Training Data
93
- - Source: `UWV/wim-synthetic-data-rd` (train split)
94
- - Samples: 9,351
95
- - Labels: 96 onderwerp, 26 beleving
96
- - Avg labels per sample: onderwerp 1.75, beleving 1.89
97
- - Shapes: onderwerp (9351, 96), beleving (9351, 26)
98
- - Train/Val split: 7,480 / 1,871 (80/20)
99
 
100
  ## Training Setup
101
  - Date: 2025‑10‑20
@@ -120,18 +120,18 @@ Trained with a combined objective: alpha · (1 − Soft‑F1) + (1 − alpha) ·
120
  ## Metrics
121
  Final validation (500 samples):
122
  - Onderwerp:
123
- - Accuracy: 99.8%
124
  - Precision: 0.960
125
- - Recall: 0.905
126
- - F1: 0.932
127
  - Beleving:
128
- - Accuracy: 97.1%
129
- - Precision: 0.859
130
- - Recall: 0.730
131
- - F1: 0.789
132
  - Combined:
133
- - Average Accuracy: 98.4%
134
- - Average F1: 0.861
135
 
136
  ## Saved Artifacts
137
  - HF‑compatible files:
 
34
  metrics:
35
  - name: F1
36
  type: f1
37
+ value: 0.936
38
  - name: Precision
39
  type: precision
40
  value: 0.960
41
  - name: Recall
42
  type: recall
43
+ value: 0.914
44
  - name: Accuracy
45
  type: accuracy
46
+ value: 0.997
47
  - task:
48
  name: Multi-label Text Classification
49
  type: text-classification
 
55
  metrics:
56
  - name: F1
57
  type: f1
58
+ value: 0.780
59
  - name: Precision
60
  type: precision
61
+ value: 0.837
62
  - name: Recall
63
  type: recall
64
+ value: 0.729
65
  - name: Accuracy
66
  type: accuracy
67
+ value: 0.975
68
  widget:
69
  - text: "Goedemiddag, ik heb al drie keer gebeld over mijn uitkering en krijg geen duidelijkheid."
70
  ---
 
81
  ## Overview
82
  - Encoder: mmBERT‑base (multilingual)
83
  - Heads: 2× MLP (Linear → Dropout → ReLU → Linear)
84
+ - Labels: 65 onderwerp, 33 beleving
85
  - Task: Multi‑label classification (sigmoid per class)
86
  - Thresholds: Disabled (fixed 0.5 used for evaluation/inference)
87
 
 
90
  - Useful for analytics, routing, and trend insights. Not intended for legal or benefit decisions without human review.
91
 
92
  ## Training Data
93
+ - Source: `UWV/wim-synthetic-data-rd` (train split) + `UWV/wim_synthetic_data_for_testing_split_labels` (train split, 3,500 samples)
94
+ - Samples: 12,491
95
+ - Labels: 65 onderwerp, 33 beleving
96
+ - Avg labels per sample: onderwerp 1.85, beleving 2.08
97
+ - Shapes: onderwerp (12491, 65), beleving (12491, 33)
98
+ - Train/Val split: 11,866 / 625
99
 
100
  ## Training Setup
101
  - Date: 2025‑10‑20
 
120
  ## Metrics
121
  Final validation (500 samples):
122
  - Onderwerp:
123
+ - Accuracy: 99.7%
124
  - Precision: 0.960
125
+ - Recall: 0.914
126
+ - F1: 0.936
127
  - Beleving:
128
+ - Accuracy: 97.5%
129
+ - Precision: 0.837
130
+ - Recall: 0.729
131
+ - F1: 0.780
132
  - Combined:
133
+ - Average Accuracy: 98.6%
134
+ - Average F1: 0.858
135
 
136
  ## Saved Artifacts
137
  - HF‑compatible files: