Upload app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,42 @@
|
|
| 1 |
# app.py
|
| 2 |
-
from transformers import pipeline
|
| 3 |
from fastapi import FastAPI, HTTPException
|
| 4 |
import torch
|
|
|
|
|
|
|
|
|
|
| 5 |
from typing import List, Dict
|
| 6 |
-
import
|
| 7 |
|
| 8 |
app = FastAPI()
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
)
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
@app.post("/predict")
|
| 22 |
async def predict(user_id: str, top_k: int = 10):
|
|
|
|
|
|
|
|
|
|
| 23 |
try:
|
| 24 |
# Get user index
|
| 25 |
user_idx = user_mapping.get(user_id)
|
|
@@ -43,10 +60,16 @@ async def predict(user_id: str, top_k: int = 10):
|
|
| 43 |
"scores": scores
|
| 44 |
}
|
| 45 |
except Exception as e:
|
| 46 |
-
raise HTTPException(
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
@app.post("/update")
|
| 49 |
async def update_model(ratings: List[Dict]):
|
|
|
|
|
|
|
|
|
|
| 50 |
try:
|
| 51 |
# Convert ratings to training format
|
| 52 |
df = pd.DataFrame(ratings)
|
|
@@ -62,12 +85,14 @@ async def update_model(ratings: List[Dict]):
|
|
| 62 |
criterion = nn.MSELoss()
|
| 63 |
|
| 64 |
model.train()
|
|
|
|
| 65 |
for user, item, rating in loader:
|
| 66 |
optimizer.zero_grad()
|
| 67 |
pred = model(user, item)
|
| 68 |
loss = criterion(pred, rating)
|
| 69 |
loss.backward()
|
| 70 |
optimizer.step()
|
|
|
|
| 71 |
|
| 72 |
# Save updated model
|
| 73 |
torch.save({
|
|
@@ -76,6 +101,28 @@ async def update_model(ratings: List[Dict]):
|
|
| 76 |
'manga_mapping': manga_mapping
|
| 77 |
}, 'manga_recommender.pt')
|
| 78 |
|
| 79 |
-
return {
|
|
|
|
|
|
|
|
|
|
| 80 |
except Exception as e:
|
| 81 |
-
raise HTTPException(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# app.py
|
|
|
|
| 2 |
from fastapi import FastAPI, HTTPException
|
| 3 |
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.utils.data import Dataset, DataLoader
|
| 6 |
+
import pandas as pd
|
| 7 |
from typing import List, Dict
|
| 8 |
+
from train import MangaRecommender, MangaDataset # Import from train.py
|
| 9 |
|
| 10 |
app = FastAPI()
|
| 11 |
|
| 12 |
+
try:
|
| 13 |
+
# Load model and mappings
|
| 14 |
+
checkpoint = torch.load('manga_recommender.pt')
|
| 15 |
+
model = MangaRecommender(
|
| 16 |
+
num_users=len(checkpoint['user_mapping']),
|
| 17 |
+
num_items=len(checkpoint['manga_mapping'])
|
| 18 |
+
)
|
| 19 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 20 |
+
user_mapping = checkpoint['user_mapping']
|
| 21 |
+
manga_mapping = checkpoint['manga_mapping']
|
| 22 |
+
reverse_manga_mapping = {v: k for k, v in manga_mapping.items()}
|
| 23 |
+
print("Model loaded successfully")
|
| 24 |
+
except Exception as e:
|
| 25 |
+
print(f"Error loading model: {e}")
|
| 26 |
+
model = None
|
| 27 |
+
user_mapping = {}
|
| 28 |
+
manga_mapping = {}
|
| 29 |
+
reverse_manga_mapping = {}
|
| 30 |
+
|
| 31 |
+
@app.get("/")
|
| 32 |
+
async def root():
|
| 33 |
+
return {"status": "running", "model_loaded": model is not None}
|
| 34 |
|
| 35 |
@app.post("/predict")
|
| 36 |
async def predict(user_id: str, top_k: int = 10):
|
| 37 |
+
if model is None:
|
| 38 |
+
raise HTTPException(status_code=500, detail="Model not loaded")
|
| 39 |
+
|
| 40 |
try:
|
| 41 |
# Get user index
|
| 42 |
user_idx = user_mapping.get(user_id)
|
|
|
|
| 60 |
"scores": scores
|
| 61 |
}
|
| 62 |
except Exception as e:
|
| 63 |
+
raise HTTPException(
|
| 64 |
+
status_code=500,
|
| 65 |
+
detail=f"Prediction error: {str(e)}"
|
| 66 |
+
)
|
| 67 |
|
| 68 |
@app.post("/update")
|
| 69 |
async def update_model(ratings: List[Dict]):
|
| 70 |
+
if model is None:
|
| 71 |
+
raise HTTPException(status_code=500, detail="Model not loaded")
|
| 72 |
+
|
| 73 |
try:
|
| 74 |
# Convert ratings to training format
|
| 75 |
df = pd.DataFrame(ratings)
|
|
|
|
| 85 |
criterion = nn.MSELoss()
|
| 86 |
|
| 87 |
model.train()
|
| 88 |
+
total_loss = 0
|
| 89 |
for user, item, rating in loader:
|
| 90 |
optimizer.zero_grad()
|
| 91 |
pred = model(user, item)
|
| 92 |
loss = criterion(pred, rating)
|
| 93 |
loss.backward()
|
| 94 |
optimizer.step()
|
| 95 |
+
total_loss += loss.item()
|
| 96 |
|
| 97 |
# Save updated model
|
| 98 |
torch.save({
|
|
|
|
| 101 |
'manga_mapping': manga_mapping
|
| 102 |
}, 'manga_recommender.pt')
|
| 103 |
|
| 104 |
+
return {
|
| 105 |
+
"message": "Model updated successfully",
|
| 106 |
+
"average_loss": total_loss / len(loader)
|
| 107 |
+
}
|
| 108 |
except Exception as e:
|
| 109 |
+
raise HTTPException(
|
| 110 |
+
status_code=500,
|
| 111 |
+
detail=f"Update error: {str(e)}"
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
@app.get("/model-info")
|
| 115 |
+
async def model_info():
|
| 116 |
+
if model is None:
|
| 117 |
+
raise HTTPException(status_code=500, detail="Model not loaded")
|
| 118 |
+
|
| 119 |
+
return {
|
| 120 |
+
"num_users": len(user_mapping),
|
| 121 |
+
"num_manga": len(manga_mapping),
|
| 122 |
+
"embedding_size": model.user_factors.embedding_dim
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
if __name__ == "__main__":
|
| 126 |
+
import uvicorn
|
| 127 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
| 128 |
+
raise HTTPException(status_code=500, detail=str(e))
|