--- library_name: transformers license: other base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: entity_extraction_new results: [] --- # QuCo-extractor-0.5B [![arXiv](https://img.shields.io/badge/arXiv-2512.19134-b31b1b.svg)](https://arxiv.org/abs/2512.19134) [![GitHub](https://img.shields.io/badge/GitHub-QuCo--RAG-blue?logo=github)](https://github.com/ZhishanQ/QuCo-RAG) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/ZhishanQ/QuCo-RAG/blob/main/LICENSE) ## Model Description **QuCo-extractor-0.5B** is a specialized entity extraction model fine-tuned from [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) for the **QuCo-RAG** system. This model extracts knowledge triples (entity-relation-entity) from sentences to support corpus-grounded uncertainty quantification in Retrieval-Augmented Generation. This model is part of the QuCo-RAG project presented in: > **QuCo-RAG: Quantifying Uncertainty from the Pre-training Corpus for Dynamic Retrieval-Augmented Generation** > > Dehai Min, Kailin Zhang, Tongtong Wu, Lu Cheng > > [[Paper]](https://arxiv.org/abs/2512.19134) [[Code]](https://github.com/ZhishanQ/QuCo-RAG) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 28 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 56 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ### Framework versions - Transformers 4.57.1 - Pytorch 2.5.1+cu121 - Datasets 4.0.0 - Tokenizers 0.22.1