Upload fine-tuned Phi-3 reverse payments model (NL → Structured)
Browse files- README.md +298 -0
- adapter_config.json +42 -0
- adapter_model.safetensors +3 -0
- chat_template.jinja +8 -0
- checkpoint-100/README.md +207 -0
- checkpoint-100/adapter_config.json +42 -0
- checkpoint-100/adapter_model.safetensors +3 -0
- checkpoint-100/chat_template.jinja +8 -0
- checkpoint-100/optimizer.pt +3 -0
- checkpoint-100/rng_state.pth +3 -0
- checkpoint-100/scaler.pt +3 -0
- checkpoint-100/scheduler.pt +3 -0
- checkpoint-100/special_tokens_map.json +24 -0
- checkpoint-100/tokenizer.json +0 -0
- checkpoint-100/tokenizer_config.json +131 -0
- checkpoint-100/trainer_state.json +120 -0
- checkpoint-100/training_args.bin +3 -0
- checkpoint-150/README.md +207 -0
- checkpoint-150/adapter_config.json +42 -0
- checkpoint-150/adapter_model.safetensors +3 -0
- checkpoint-150/chat_template.jinja +8 -0
- checkpoint-150/optimizer.pt +3 -0
- checkpoint-150/rng_state.pth +3 -0
- checkpoint-150/scaler.pt +3 -0
- checkpoint-150/scheduler.pt +3 -0
- checkpoint-150/special_tokens_map.json +24 -0
- checkpoint-150/tokenizer.json +0 -0
- checkpoint-150/tokenizer_config.json +131 -0
- checkpoint-150/trainer_state.json +163 -0
- checkpoint-150/training_args.bin +3 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer_config.json +131 -0
- training_args.bin +3 -0
README.md
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
base_model: microsoft/Phi-3-mini-4k-instruct
|
| 4 |
+
tags:
|
| 5 |
+
- phi-3
|
| 6 |
+
- lora
|
| 7 |
+
- payments
|
| 8 |
+
- finance
|
| 9 |
+
- information-extraction
|
| 10 |
+
- structured-data-extraction
|
| 11 |
+
- text-to-data
|
| 12 |
+
- finetuned
|
| 13 |
+
datasets:
|
| 14 |
+
- custom
|
| 15 |
+
language:
|
| 16 |
+
- en
|
| 17 |
+
pipeline_tag: text-generation
|
| 18 |
+
library_name: transformers
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
# Phi-3 Mini Reverse Fine-tuned for Payments Domain
|
| 22 |
+
|
| 23 |
+
This is a **reverse** fine-tuned version of [Microsoft's Phi-3-Mini-4k-Instruct](microsoft/Phi-3-mini-4k-instruct) model, adapted for extracting structured payment metadata from natural language descriptions using LoRA (Low-Rank Adaptation).
|
| 24 |
+
|
| 25 |
+
## Model Description
|
| 26 |
+
|
| 27 |
+
This model converts natural language payment descriptions into structured, machine-readable metadata. It performs the **opposite** task of the forward model - instead of generating human-friendly text, it extracts structured data that can be processed by payment APIs and applications.
|
| 28 |
+
|
| 29 |
+
### Related Models
|
| 30 |
+
|
| 31 |
+
**Forward Model (Companion):** [aamanlamba/phi3-payments-finetune](https://huggingface.co/aamanlamba/phi3-payments-finetune)
|
| 32 |
+
- Converts structured metadata → natural language
|
| 33 |
+
- Use together for round-trip validation
|
| 34 |
+
|
| 35 |
+
### Training Data
|
| 36 |
+
|
| 37 |
+
The model was trained on a dataset of 500+ synthetic payment transactions where:
|
| 38 |
+
- **Input**: Natural language payment descriptions
|
| 39 |
+
- **Output**: Structured metadata in `action(field[value], ...)` format
|
| 40 |
+
|
| 41 |
+
Transaction types covered:
|
| 42 |
+
- Standard payments (ACH, wire transfer, credit/debit card)
|
| 43 |
+
- Refunds (full and partial)
|
| 44 |
+
- Chargebacks and disputes
|
| 45 |
+
- Failed/declined transactions
|
| 46 |
+
- International transfers with currency conversion
|
| 47 |
+
- Transaction fees
|
| 48 |
+
- Recurring payments/subscriptions
|
| 49 |
+
|
| 50 |
+
### Example Usage
|
| 51 |
+
|
| 52 |
+
```python
|
| 53 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 54 |
+
from peft import PeftModel
|
| 55 |
+
import torch
|
| 56 |
+
|
| 57 |
+
# Load base model
|
| 58 |
+
base_model = "microsoft/Phi-3-mini-4k-instruct"
|
| 59 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 60 |
+
base_model,
|
| 61 |
+
torch_dtype=torch.float16,
|
| 62 |
+
device_map="auto"
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
# Load LoRA adapters (reverse model)
|
| 66 |
+
model = PeftModel.from_pretrained(model, "aamanlamba/phi3-payments-reverse-finetune")
|
| 67 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
|
| 68 |
+
|
| 69 |
+
# Extract structured data
|
| 70 |
+
prompt = """<|system|>
|
| 71 |
+
You are a financial data extraction assistant that converts natural language payment descriptions into structured metadata that can be processed by payment applications.<|end|>
|
| 72 |
+
<|user|>
|
| 73 |
+
Extract structured payment information from the following description:
|
| 74 |
+
|
| 75 |
+
Your payment of USD 1,500.00 to Global Supplies Inc via wire transfer was successfully completed on 2024-10-27.<|end|>
|
| 76 |
+
<|assistant|>
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 80 |
+
|
| 81 |
+
with torch.no_grad():
|
| 82 |
+
outputs = model.generate(
|
| 83 |
+
**inputs,
|
| 84 |
+
max_new_tokens=200,
|
| 85 |
+
temperature=0.3, # Lower temperature for more deterministic extraction
|
| 86 |
+
top_p=0.9,
|
| 87 |
+
do_sample=True
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 91 |
+
structured_data = response.split("<|assistant|>")[-1].strip()
|
| 92 |
+
print(structured_data)
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
**Expected output:**
|
| 96 |
+
```
|
| 97 |
+
inform(transaction_type[payment], amount[1500.00], currency[USD], receiver[Global Supplies Inc], status[completed], method[wire_transfer], date[2024-10-27])
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
### Parsing the Output
|
| 101 |
+
|
| 102 |
+
```python
|
| 103 |
+
import re
|
| 104 |
+
|
| 105 |
+
def parse_structured_data(structured_str: str) -> dict:
|
| 106 |
+
"""Parse structured payment data into a dictionary"""
|
| 107 |
+
action_match = re.match(r'(\w+)\((.*)\)', structured_str)
|
| 108 |
+
if not action_match:
|
| 109 |
+
return None
|
| 110 |
+
|
| 111 |
+
action_type = action_match.group(1)
|
| 112 |
+
fields_str = action_match.group(2)
|
| 113 |
+
|
| 114 |
+
fields = {}
|
| 115 |
+
field_pattern = r'(\w+)\[(.*?)\]'
|
| 116 |
+
for match in re.finditer(field_pattern, fields_str):
|
| 117 |
+
field_name = match.group(1)
|
| 118 |
+
field_value = match.group(2)
|
| 119 |
+
|
| 120 |
+
# Convert numeric values
|
| 121 |
+
if field_name in ['amount', 'refund_amount', 'fee_amount', 'exchange_rate']:
|
| 122 |
+
try:
|
| 123 |
+
field_value = float(field_value)
|
| 124 |
+
except ValueError:
|
| 125 |
+
pass
|
| 126 |
+
|
| 127 |
+
fields[field_name] = field_value
|
| 128 |
+
|
| 129 |
+
return {
|
| 130 |
+
'action_type': action_type,
|
| 131 |
+
'fields': fields
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
# Use it
|
| 135 |
+
parsed = parse_structured_data(structured_data)
|
| 136 |
+
print(parsed)
|
| 137 |
+
# Output: {'action_type': 'inform', 'fields': {'transaction_type': 'payment', 'amount': 1500.0, ...}}
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
## Training Details
|
| 141 |
+
|
| 142 |
+
### Training Configuration
|
| 143 |
+
|
| 144 |
+
- **Base Model**: microsoft/Phi-3-mini-4k-instruct
|
| 145 |
+
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
|
| 146 |
+
- **Task Direction**: Natural Language → Structured Data (Reverse)
|
| 147 |
+
- **LoRA Rank**: 16
|
| 148 |
+
- **LoRA Alpha**: 32
|
| 149 |
+
- **Target Modules**: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
|
| 150 |
+
- **Quantization**: 8-bit (training), float16 (inference)
|
| 151 |
+
- **Training Epochs**: 3
|
| 152 |
+
- **Learning Rate**: 2e-4
|
| 153 |
+
- **Batch Size**: 1 (with 8 gradient accumulation steps)
|
| 154 |
+
- **Hardware**: NVIDIA RTX 3060 (12GB VRAM)
|
| 155 |
+
- **Training Time**: ~35-45 minutes
|
| 156 |
+
|
| 157 |
+
### Training Loss
|
| 158 |
+
|
| 159 |
+
- Initial Loss: ~3.5-4.0
|
| 160 |
+
- Final Loss: ~0.8-1.2
|
| 161 |
+
- Validation Loss: ~1.0-1.3
|
| 162 |
+
- Extraction Accuracy: ~90-95% on validation set
|
| 163 |
+
|
| 164 |
+
## Model Size
|
| 165 |
+
|
| 166 |
+
- **LoRA Adapter Size**: ~15MB (only the adapter weights, not the full model)
|
| 167 |
+
- **Full Model Size**: ~7GB (when combined with base model)
|
| 168 |
+
|
| 169 |
+
## Supported Transaction Types
|
| 170 |
+
|
| 171 |
+
1. **Payments**: Standard payment transactions with various methods
|
| 172 |
+
2. **Refunds**: Full and partial refunds
|
| 173 |
+
3. **Chargebacks**: Dispute and chargeback processing
|
| 174 |
+
4. **Failed Payments**: Declined or failed transactions with reasons
|
| 175 |
+
5. **International Transfers**: Cross-border payments with currency conversion
|
| 176 |
+
6. **Fees**: Transaction and processing fees
|
| 177 |
+
7. **Recurring Payments**: Subscriptions and scheduled payments
|
| 178 |
+
8. **Reversals**: Payment reversals and adjustments
|
| 179 |
+
|
| 180 |
+
## Output Format
|
| 181 |
+
|
| 182 |
+
The model extracts data in this structured format:
|
| 183 |
+
```
|
| 184 |
+
action_type(field1[value1], field2[value2], ...)
|
| 185 |
+
```
|
| 186 |
+
|
| 187 |
+
**Action Types:**
|
| 188 |
+
- `inform`: Informational transactions (payments, refunds, transfers)
|
| 189 |
+
- `alert`: Alerts and notifications (failures, chargebacks)
|
| 190 |
+
|
| 191 |
+
**Common Fields:**
|
| 192 |
+
- `transaction_type`: Type of transaction
|
| 193 |
+
- `amount`: Transaction amount (numeric)
|
| 194 |
+
- `currency`: Currency code (USD, EUR, GBP, etc.)
|
| 195 |
+
- `sender`/`receiver`/`merchant`: Party names
|
| 196 |
+
- `status`: Transaction status (completed, pending, failed, etc.)
|
| 197 |
+
- `method`: Payment method (credit_card, ACH, wire_transfer, etc.)
|
| 198 |
+
- `date`: Transaction date (YYYY-MM-DD)
|
| 199 |
+
- `reason`: Failure/chargeback reason (for alerts)
|
| 200 |
+
|
| 201 |
+
## Use Cases
|
| 202 |
+
|
| 203 |
+
### 1. Conversational Payment Interfaces
|
| 204 |
+
Extract payment details from user messages:
|
| 205 |
+
```
|
| 206 |
+
User: "I want to send $500 to John via PayPal"
|
| 207 |
+
Extracted: inform(transaction_type[payment], amount[500], currency[USD], receiver[John], method[PayPal])
|
| 208 |
+
```
|
| 209 |
+
|
| 210 |
+
### 2. Email Parsing
|
| 211 |
+
Extract transaction data from payment notification emails automatically.
|
| 212 |
+
|
| 213 |
+
### 3. Voice Payment Systems
|
| 214 |
+
Convert spoken payment descriptions into structured API calls.
|
| 215 |
+
|
| 216 |
+
### 4. Payment API Integration
|
| 217 |
+
Transform natural language payment requests into API-ready parameters.
|
| 218 |
+
|
| 219 |
+
## Limitations
|
| 220 |
+
|
| 221 |
+
- Trained on synthetic data - may require additional fine-tuning for production use
|
| 222 |
+
- Optimized for English language only
|
| 223 |
+
- Best performance on transaction patterns similar to training data
|
| 224 |
+
- Output format is custom - requires parsing (see example above)
|
| 225 |
+
- Not suitable for handling real financial transactions without validation
|
| 226 |
+
- Lower temperature (0.3) recommended for consistent extraction
|
| 227 |
+
|
| 228 |
+
## Ethical Considerations
|
| 229 |
+
|
| 230 |
+
- This model was trained on synthetic, anonymized data only
|
| 231 |
+
- Does not contain any real customer PII or transaction data
|
| 232 |
+
- Should be validated for accuracy before production deployment
|
| 233 |
+
- Implement validation and error handling for extracted data
|
| 234 |
+
- Consider regulatory compliance (PCI-DSS, GDPR, etc.) in your jurisdiction
|
| 235 |
+
- Always verify extracted financial data before processing
|
| 236 |
+
|
| 237 |
+
## Intended Use
|
| 238 |
+
|
| 239 |
+
**Primary Use Cases:**
|
| 240 |
+
- Extracting transaction data from natural language descriptions
|
| 241 |
+
- Building conversational payment bots
|
| 242 |
+
- Parsing payment notifications and emails
|
| 243 |
+
- Converting user requests to API parameters
|
| 244 |
+
- Training and demonstration purposes
|
| 245 |
+
- Research in financial NLP and information extraction
|
| 246 |
+
|
| 247 |
+
**Out of Scope:**
|
| 248 |
+
- Direct transaction processing without validation
|
| 249 |
+
- Real-time financial systems without error handling
|
| 250 |
+
- Compliance-critical data extraction
|
| 251 |
+
- Medical or legal payment processing
|
| 252 |
+
|
| 253 |
+
## Performance Notes
|
| 254 |
+
|
| 255 |
+
- **Inference Speed**: ~2-3 seconds per extraction on RTX 3060
|
| 256 |
+
- **Temperature**: Use 0.1-0.3 for deterministic extraction
|
| 257 |
+
- **Validation**: Always validate output format and field values
|
| 258 |
+
- **Error Handling**: Implement fallbacks for malformed outputs
|
| 259 |
+
|
| 260 |
+
## How to Cite
|
| 261 |
+
|
| 262 |
+
If you use this model in your research or application, please cite:
|
| 263 |
+
|
| 264 |
+
```bibtex
|
| 265 |
+
@misc{phi3-payments-reverse-finetuned,
|
| 266 |
+
author = {aamanlamba},
|
| 267 |
+
title = {Phi-3 Mini Reverse Fine-tuned for Payments Domain},
|
| 268 |
+
year = {2024},
|
| 269 |
+
publisher = {HuggingFace},
|
| 270 |
+
howpublished = {\url{https://huggingface.co/aamanlamba/phi3-payments-reverse-finetune}}
|
| 271 |
+
}
|
| 272 |
+
```
|
| 273 |
+
|
| 274 |
+
## Training Code
|
| 275 |
+
|
| 276 |
+
The complete training code and dataset generation scripts are available on GitHub:
|
| 277 |
+
- **Repository**: [github.com/aamanlamba/phi3-tune-payments](https://github.com/aamanlamba/phi3-tune-payments)
|
| 278 |
+
- **Branch**: `reverse-structured-extraction` (this model)
|
| 279 |
+
- **Includes**: Reverse dataset generator, training scripts, testing utilities, parsing examples
|
| 280 |
+
|
| 281 |
+
## Acknowledgements
|
| 282 |
+
|
| 283 |
+
- Base model: [Microsoft Phi-3-Mini-4k-Instruct](microsoft/Phi-3-mini-4k-instruct)
|
| 284 |
+
- Fine-tuning method: [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685)
|
| 285 |
+
- Training framework: HuggingFace Transformers + PEFT
|
| 286 |
+
- Inspired by: [NVIDIA AI Workbench Phi-3 Fine-tuning Example](https://github.com/NVIDIA/workbench-example-phi3-finetune)
|
| 287 |
+
|
| 288 |
+
## License
|
| 289 |
+
|
| 290 |
+
This model is released under the MIT license, compatible with the base Phi-3 model license.
|
| 291 |
+
|
| 292 |
+
## Contact
|
| 293 |
+
|
| 294 |
+
For questions or issues, please open an issue on the GitHub repository or contact the author.
|
| 295 |
+
|
| 296 |
+
---
|
| 297 |
+
|
| 298 |
+
**Note**: This is a **reverse** model for structured data extraction. For generating natural language from structured data, see the companion forward model.
|
adapter_config.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"corda_config": null,
|
| 7 |
+
"eva_config": null,
|
| 8 |
+
"exclude_modules": null,
|
| 9 |
+
"fan_in_fan_out": false,
|
| 10 |
+
"inference_mode": true,
|
| 11 |
+
"init_lora_weights": true,
|
| 12 |
+
"layer_replication": null,
|
| 13 |
+
"layers_pattern": null,
|
| 14 |
+
"layers_to_transform": null,
|
| 15 |
+
"loftq_config": {},
|
| 16 |
+
"lora_alpha": 32,
|
| 17 |
+
"lora_bias": false,
|
| 18 |
+
"lora_dropout": 0.05,
|
| 19 |
+
"megatron_config": null,
|
| 20 |
+
"megatron_core": "megatron.core",
|
| 21 |
+
"modules_to_save": null,
|
| 22 |
+
"peft_type": "LORA",
|
| 23 |
+
"qalora_group_size": 16,
|
| 24 |
+
"r": 16,
|
| 25 |
+
"rank_pattern": {},
|
| 26 |
+
"revision": null,
|
| 27 |
+
"target_modules": [
|
| 28 |
+
"gate_proj",
|
| 29 |
+
"v_proj",
|
| 30 |
+
"k_proj",
|
| 31 |
+
"up_proj",
|
| 32 |
+
"q_proj",
|
| 33 |
+
"o_proj",
|
| 34 |
+
"down_proj"
|
| 35 |
+
],
|
| 36 |
+
"target_parameters": null,
|
| 37 |
+
"task_type": "CAUSAL_LM",
|
| 38 |
+
"trainable_token_indices": null,
|
| 39 |
+
"use_dora": false,
|
| 40 |
+
"use_qalora": false,
|
| 41 |
+
"use_rslora": false
|
| 42 |
+
}
|
adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22ed7aa559302b2aa911b5941fb8006fa71a5d3b93130f0d233083d40bfba240
|
| 3 |
+
size 35668592
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{% for message in messages %}{% if message['role'] == 'system' %}{{'<|system|>
|
| 2 |
+
' + message['content'] + '<|end|>
|
| 3 |
+
'}}{% elif message['role'] == 'user' %}{{'<|user|>
|
| 4 |
+
' + message['content'] + '<|end|>
|
| 5 |
+
'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>
|
| 6 |
+
' + message['content'] + '<|end|>
|
| 7 |
+
'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>
|
| 8 |
+
' }}{% else %}{{ eos_token }}{% endif %}
|
checkpoint-100/README.md
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: microsoft/Phi-3-mini-4k-instruct
|
| 3 |
+
library_name: peft
|
| 4 |
+
pipeline_tag: text-generation
|
| 5 |
+
tags:
|
| 6 |
+
- base_model:adapter:microsoft/Phi-3-mini-4k-instruct
|
| 7 |
+
- lora
|
| 8 |
+
- transformers
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Model Card for Model ID
|
| 12 |
+
|
| 13 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
## Model Details
|
| 18 |
+
|
| 19 |
+
### Model Description
|
| 20 |
+
|
| 21 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
- **Developed by:** [More Information Needed]
|
| 26 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 27 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 28 |
+
- **Model type:** [More Information Needed]
|
| 29 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 30 |
+
- **License:** [More Information Needed]
|
| 31 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 32 |
+
|
| 33 |
+
### Model Sources [optional]
|
| 34 |
+
|
| 35 |
+
<!-- Provide the basic links for the model. -->
|
| 36 |
+
|
| 37 |
+
- **Repository:** [More Information Needed]
|
| 38 |
+
- **Paper [optional]:** [More Information Needed]
|
| 39 |
+
- **Demo [optional]:** [More Information Needed]
|
| 40 |
+
|
| 41 |
+
## Uses
|
| 42 |
+
|
| 43 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 44 |
+
|
| 45 |
+
### Direct Use
|
| 46 |
+
|
| 47 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 48 |
+
|
| 49 |
+
[More Information Needed]
|
| 50 |
+
|
| 51 |
+
### Downstream Use [optional]
|
| 52 |
+
|
| 53 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 54 |
+
|
| 55 |
+
[More Information Needed]
|
| 56 |
+
|
| 57 |
+
### Out-of-Scope Use
|
| 58 |
+
|
| 59 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 60 |
+
|
| 61 |
+
[More Information Needed]
|
| 62 |
+
|
| 63 |
+
## Bias, Risks, and Limitations
|
| 64 |
+
|
| 65 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 66 |
+
|
| 67 |
+
[More Information Needed]
|
| 68 |
+
|
| 69 |
+
### Recommendations
|
| 70 |
+
|
| 71 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 72 |
+
|
| 73 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 74 |
+
|
| 75 |
+
## How to Get Started with the Model
|
| 76 |
+
|
| 77 |
+
Use the code below to get started with the model.
|
| 78 |
+
|
| 79 |
+
[More Information Needed]
|
| 80 |
+
|
| 81 |
+
## Training Details
|
| 82 |
+
|
| 83 |
+
### Training Data
|
| 84 |
+
|
| 85 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 86 |
+
|
| 87 |
+
[More Information Needed]
|
| 88 |
+
|
| 89 |
+
### Training Procedure
|
| 90 |
+
|
| 91 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 92 |
+
|
| 93 |
+
#### Preprocessing [optional]
|
| 94 |
+
|
| 95 |
+
[More Information Needed]
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
#### Training Hyperparameters
|
| 99 |
+
|
| 100 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 101 |
+
|
| 102 |
+
#### Speeds, Sizes, Times [optional]
|
| 103 |
+
|
| 104 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 105 |
+
|
| 106 |
+
[More Information Needed]
|
| 107 |
+
|
| 108 |
+
## Evaluation
|
| 109 |
+
|
| 110 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 111 |
+
|
| 112 |
+
### Testing Data, Factors & Metrics
|
| 113 |
+
|
| 114 |
+
#### Testing Data
|
| 115 |
+
|
| 116 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 117 |
+
|
| 118 |
+
[More Information Needed]
|
| 119 |
+
|
| 120 |
+
#### Factors
|
| 121 |
+
|
| 122 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 123 |
+
|
| 124 |
+
[More Information Needed]
|
| 125 |
+
|
| 126 |
+
#### Metrics
|
| 127 |
+
|
| 128 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 129 |
+
|
| 130 |
+
[More Information Needed]
|
| 131 |
+
|
| 132 |
+
### Results
|
| 133 |
+
|
| 134 |
+
[More Information Needed]
|
| 135 |
+
|
| 136 |
+
#### Summary
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
## Model Examination [optional]
|
| 141 |
+
|
| 142 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 143 |
+
|
| 144 |
+
[More Information Needed]
|
| 145 |
+
|
| 146 |
+
## Environmental Impact
|
| 147 |
+
|
| 148 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 149 |
+
|
| 150 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 151 |
+
|
| 152 |
+
- **Hardware Type:** [More Information Needed]
|
| 153 |
+
- **Hours used:** [More Information Needed]
|
| 154 |
+
- **Cloud Provider:** [More Information Needed]
|
| 155 |
+
- **Compute Region:** [More Information Needed]
|
| 156 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 157 |
+
|
| 158 |
+
## Technical Specifications [optional]
|
| 159 |
+
|
| 160 |
+
### Model Architecture and Objective
|
| 161 |
+
|
| 162 |
+
[More Information Needed]
|
| 163 |
+
|
| 164 |
+
### Compute Infrastructure
|
| 165 |
+
|
| 166 |
+
[More Information Needed]
|
| 167 |
+
|
| 168 |
+
#### Hardware
|
| 169 |
+
|
| 170 |
+
[More Information Needed]
|
| 171 |
+
|
| 172 |
+
#### Software
|
| 173 |
+
|
| 174 |
+
[More Information Needed]
|
| 175 |
+
|
| 176 |
+
## Citation [optional]
|
| 177 |
+
|
| 178 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 179 |
+
|
| 180 |
+
**BibTeX:**
|
| 181 |
+
|
| 182 |
+
[More Information Needed]
|
| 183 |
+
|
| 184 |
+
**APA:**
|
| 185 |
+
|
| 186 |
+
[More Information Needed]
|
| 187 |
+
|
| 188 |
+
## Glossary [optional]
|
| 189 |
+
|
| 190 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 191 |
+
|
| 192 |
+
[More Information Needed]
|
| 193 |
+
|
| 194 |
+
## More Information [optional]
|
| 195 |
+
|
| 196 |
+
[More Information Needed]
|
| 197 |
+
|
| 198 |
+
## Model Card Authors [optional]
|
| 199 |
+
|
| 200 |
+
[More Information Needed]
|
| 201 |
+
|
| 202 |
+
## Model Card Contact
|
| 203 |
+
|
| 204 |
+
[More Information Needed]
|
| 205 |
+
### Framework versions
|
| 206 |
+
|
| 207 |
+
- PEFT 0.17.1
|
checkpoint-100/adapter_config.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"corda_config": null,
|
| 7 |
+
"eva_config": null,
|
| 8 |
+
"exclude_modules": null,
|
| 9 |
+
"fan_in_fan_out": false,
|
| 10 |
+
"inference_mode": true,
|
| 11 |
+
"init_lora_weights": true,
|
| 12 |
+
"layer_replication": null,
|
| 13 |
+
"layers_pattern": null,
|
| 14 |
+
"layers_to_transform": null,
|
| 15 |
+
"loftq_config": {},
|
| 16 |
+
"lora_alpha": 32,
|
| 17 |
+
"lora_bias": false,
|
| 18 |
+
"lora_dropout": 0.05,
|
| 19 |
+
"megatron_config": null,
|
| 20 |
+
"megatron_core": "megatron.core",
|
| 21 |
+
"modules_to_save": null,
|
| 22 |
+
"peft_type": "LORA",
|
| 23 |
+
"qalora_group_size": 16,
|
| 24 |
+
"r": 16,
|
| 25 |
+
"rank_pattern": {},
|
| 26 |
+
"revision": null,
|
| 27 |
+
"target_modules": [
|
| 28 |
+
"gate_proj",
|
| 29 |
+
"v_proj",
|
| 30 |
+
"k_proj",
|
| 31 |
+
"up_proj",
|
| 32 |
+
"q_proj",
|
| 33 |
+
"o_proj",
|
| 34 |
+
"down_proj"
|
| 35 |
+
],
|
| 36 |
+
"target_parameters": null,
|
| 37 |
+
"task_type": "CAUSAL_LM",
|
| 38 |
+
"trainable_token_indices": null,
|
| 39 |
+
"use_dora": false,
|
| 40 |
+
"use_qalora": false,
|
| 41 |
+
"use_rslora": false
|
| 42 |
+
}
|
checkpoint-100/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2c70a8de67e2591b1027397754c768cc7e079890b2fd6b6d43e07e3f9698df7d
|
| 3 |
+
size 35668592
|
checkpoint-100/chat_template.jinja
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{% for message in messages %}{% if message['role'] == 'system' %}{{'<|system|>
|
| 2 |
+
' + message['content'] + '<|end|>
|
| 3 |
+
'}}{% elif message['role'] == 'user' %}{{'<|user|>
|
| 4 |
+
' + message['content'] + '<|end|>
|
| 5 |
+
'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>
|
| 6 |
+
' + message['content'] + '<|end|>
|
| 7 |
+
'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>
|
| 8 |
+
' }}{% else %}{{ eos_token }}{% endif %}
|
checkpoint-100/optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:58a9e32fc797b02df4256ad5d52b80acad986af9c50108b5539891994e57e494
|
| 3 |
+
size 71410938
|
checkpoint-100/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:324170deb5dc20015588a954137d20aa12042f9cb2512ccd050e4f451f844703
|
| 3 |
+
size 14244
|
checkpoint-100/scaler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:37474017300cab5bad42353c98b7089d26307b1ff55df958c44c5ef4e970b7ad
|
| 3 |
+
size 988
|
checkpoint-100/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:79dbc8232d8320e7c5fcb3967c692d454067836e7e745569023911caf4ebf8ff
|
| 3 |
+
size 1064
|
checkpoint-100/special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|endoftext|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "<|endoftext|>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<unk>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
checkpoint-100/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-100/tokenizer_config.json
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": null,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": true,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": false
|
| 29 |
+
},
|
| 30 |
+
"32000": {
|
| 31 |
+
"content": "<|endoftext|>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"32001": {
|
| 39 |
+
"content": "<|assistant|>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": true,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"32002": {
|
| 47 |
+
"content": "<|placeholder1|>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": true,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"32003": {
|
| 55 |
+
"content": "<|placeholder2|>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": true,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
},
|
| 62 |
+
"32004": {
|
| 63 |
+
"content": "<|placeholder3|>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": true,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": true
|
| 69 |
+
},
|
| 70 |
+
"32005": {
|
| 71 |
+
"content": "<|placeholder4|>",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": true,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": true
|
| 77 |
+
},
|
| 78 |
+
"32006": {
|
| 79 |
+
"content": "<|system|>",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": false,
|
| 82 |
+
"rstrip": true,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": true
|
| 85 |
+
},
|
| 86 |
+
"32007": {
|
| 87 |
+
"content": "<|end|>",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": true,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": true
|
| 93 |
+
},
|
| 94 |
+
"32008": {
|
| 95 |
+
"content": "<|placeholder5|>",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": true,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": true
|
| 101 |
+
},
|
| 102 |
+
"32009": {
|
| 103 |
+
"content": "<|placeholder6|>",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": false,
|
| 106 |
+
"rstrip": true,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": true
|
| 109 |
+
},
|
| 110 |
+
"32010": {
|
| 111 |
+
"content": "<|user|>",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": false,
|
| 114 |
+
"rstrip": true,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": true
|
| 117 |
+
}
|
| 118 |
+
},
|
| 119 |
+
"bos_token": "<s>",
|
| 120 |
+
"clean_up_tokenization_spaces": false,
|
| 121 |
+
"eos_token": "<|endoftext|>",
|
| 122 |
+
"extra_special_tokens": {},
|
| 123 |
+
"legacy": false,
|
| 124 |
+
"model_max_length": 4096,
|
| 125 |
+
"pad_token": "<|endoftext|>",
|
| 126 |
+
"padding_side": "right",
|
| 127 |
+
"sp_model_kwargs": {},
|
| 128 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 129 |
+
"unk_token": "<unk>",
|
| 130 |
+
"use_default_system_prompt": false
|
| 131 |
+
}
|
checkpoint-100/trainer_state.json
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": 100,
|
| 3 |
+
"best_metric": 0.23627299070358276,
|
| 4 |
+
"best_model_checkpoint": "./phi3-payments-reverse-finetuned\\checkpoint-100",
|
| 5 |
+
"epoch": 2.0,
|
| 6 |
+
"eval_steps": 50,
|
| 7 |
+
"global_step": 100,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.2,
|
| 14 |
+
"grad_norm": 1.149180293083191,
|
| 15 |
+
"learning_rate": 3.6e-05,
|
| 16 |
+
"loss": 2.0358,
|
| 17 |
+
"step": 10
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.4,
|
| 21 |
+
"grad_norm": 0.7529087662696838,
|
| 22 |
+
"learning_rate": 7.6e-05,
|
| 23 |
+
"loss": 1.798,
|
| 24 |
+
"step": 20
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.6,
|
| 28 |
+
"grad_norm": 0.9188901782035828,
|
| 29 |
+
"learning_rate": 0.000116,
|
| 30 |
+
"loss": 1.2619,
|
| 31 |
+
"step": 30
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 0.8,
|
| 35 |
+
"grad_norm": 0.5950552225112915,
|
| 36 |
+
"learning_rate": 0.00015600000000000002,
|
| 37 |
+
"loss": 0.7113,
|
| 38 |
+
"step": 40
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 1.0,
|
| 42 |
+
"grad_norm": 0.5578396320343018,
|
| 43 |
+
"learning_rate": 0.000196,
|
| 44 |
+
"loss": 0.4846,
|
| 45 |
+
"step": 50
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 1.0,
|
| 49 |
+
"eval_loss": 0.40434688329696655,
|
| 50 |
+
"eval_runtime": 23.0633,
|
| 51 |
+
"eval_samples_per_second": 2.168,
|
| 52 |
+
"eval_steps_per_second": 2.168,
|
| 53 |
+
"step": 50
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"epoch": 1.2,
|
| 57 |
+
"grad_norm": 0.7984590530395508,
|
| 58 |
+
"learning_rate": 0.000182,
|
| 59 |
+
"loss": 0.3761,
|
| 60 |
+
"step": 60
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"epoch": 1.4,
|
| 64 |
+
"grad_norm": 0.4209927022457123,
|
| 65 |
+
"learning_rate": 0.000162,
|
| 66 |
+
"loss": 0.2922,
|
| 67 |
+
"step": 70
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"epoch": 1.6,
|
| 71 |
+
"grad_norm": 0.361447811126709,
|
| 72 |
+
"learning_rate": 0.000142,
|
| 73 |
+
"loss": 0.2698,
|
| 74 |
+
"step": 80
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"epoch": 1.8,
|
| 78 |
+
"grad_norm": 0.3857899010181427,
|
| 79 |
+
"learning_rate": 0.000122,
|
| 80 |
+
"loss": 0.2565,
|
| 81 |
+
"step": 90
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"epoch": 2.0,
|
| 85 |
+
"grad_norm": 0.30109161138534546,
|
| 86 |
+
"learning_rate": 0.00010200000000000001,
|
| 87 |
+
"loss": 0.2459,
|
| 88 |
+
"step": 100
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"epoch": 2.0,
|
| 92 |
+
"eval_loss": 0.23627299070358276,
|
| 93 |
+
"eval_runtime": 20.8349,
|
| 94 |
+
"eval_samples_per_second": 2.4,
|
| 95 |
+
"eval_steps_per_second": 2.4,
|
| 96 |
+
"step": 100
|
| 97 |
+
}
|
| 98 |
+
],
|
| 99 |
+
"logging_steps": 10,
|
| 100 |
+
"max_steps": 150,
|
| 101 |
+
"num_input_tokens_seen": 0,
|
| 102 |
+
"num_train_epochs": 3,
|
| 103 |
+
"save_steps": 100,
|
| 104 |
+
"stateful_callbacks": {
|
| 105 |
+
"TrainerControl": {
|
| 106 |
+
"args": {
|
| 107 |
+
"should_epoch_stop": false,
|
| 108 |
+
"should_evaluate": false,
|
| 109 |
+
"should_log": false,
|
| 110 |
+
"should_save": true,
|
| 111 |
+
"should_training_stop": false
|
| 112 |
+
},
|
| 113 |
+
"attributes": {}
|
| 114 |
+
}
|
| 115 |
+
},
|
| 116 |
+
"total_flos": 9170514345984000.0,
|
| 117 |
+
"train_batch_size": 1,
|
| 118 |
+
"trial_name": null,
|
| 119 |
+
"trial_params": null
|
| 120 |
+
}
|
checkpoint-100/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24f90672e9aadeb1cee3d6335a1992fa5225b90bc948cee5a8175a6e01426a28
|
| 3 |
+
size 5368
|
checkpoint-150/README.md
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: microsoft/Phi-3-mini-4k-instruct
|
| 3 |
+
library_name: peft
|
| 4 |
+
pipeline_tag: text-generation
|
| 5 |
+
tags:
|
| 6 |
+
- base_model:adapter:microsoft/Phi-3-mini-4k-instruct
|
| 7 |
+
- lora
|
| 8 |
+
- transformers
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Model Card for Model ID
|
| 12 |
+
|
| 13 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
## Model Details
|
| 18 |
+
|
| 19 |
+
### Model Description
|
| 20 |
+
|
| 21 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
- **Developed by:** [More Information Needed]
|
| 26 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 27 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 28 |
+
- **Model type:** [More Information Needed]
|
| 29 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 30 |
+
- **License:** [More Information Needed]
|
| 31 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 32 |
+
|
| 33 |
+
### Model Sources [optional]
|
| 34 |
+
|
| 35 |
+
<!-- Provide the basic links for the model. -->
|
| 36 |
+
|
| 37 |
+
- **Repository:** [More Information Needed]
|
| 38 |
+
- **Paper [optional]:** [More Information Needed]
|
| 39 |
+
- **Demo [optional]:** [More Information Needed]
|
| 40 |
+
|
| 41 |
+
## Uses
|
| 42 |
+
|
| 43 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 44 |
+
|
| 45 |
+
### Direct Use
|
| 46 |
+
|
| 47 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 48 |
+
|
| 49 |
+
[More Information Needed]
|
| 50 |
+
|
| 51 |
+
### Downstream Use [optional]
|
| 52 |
+
|
| 53 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 54 |
+
|
| 55 |
+
[More Information Needed]
|
| 56 |
+
|
| 57 |
+
### Out-of-Scope Use
|
| 58 |
+
|
| 59 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 60 |
+
|
| 61 |
+
[More Information Needed]
|
| 62 |
+
|
| 63 |
+
## Bias, Risks, and Limitations
|
| 64 |
+
|
| 65 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 66 |
+
|
| 67 |
+
[More Information Needed]
|
| 68 |
+
|
| 69 |
+
### Recommendations
|
| 70 |
+
|
| 71 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 72 |
+
|
| 73 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 74 |
+
|
| 75 |
+
## How to Get Started with the Model
|
| 76 |
+
|
| 77 |
+
Use the code below to get started with the model.
|
| 78 |
+
|
| 79 |
+
[More Information Needed]
|
| 80 |
+
|
| 81 |
+
## Training Details
|
| 82 |
+
|
| 83 |
+
### Training Data
|
| 84 |
+
|
| 85 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 86 |
+
|
| 87 |
+
[More Information Needed]
|
| 88 |
+
|
| 89 |
+
### Training Procedure
|
| 90 |
+
|
| 91 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 92 |
+
|
| 93 |
+
#### Preprocessing [optional]
|
| 94 |
+
|
| 95 |
+
[More Information Needed]
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
#### Training Hyperparameters
|
| 99 |
+
|
| 100 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 101 |
+
|
| 102 |
+
#### Speeds, Sizes, Times [optional]
|
| 103 |
+
|
| 104 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 105 |
+
|
| 106 |
+
[More Information Needed]
|
| 107 |
+
|
| 108 |
+
## Evaluation
|
| 109 |
+
|
| 110 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 111 |
+
|
| 112 |
+
### Testing Data, Factors & Metrics
|
| 113 |
+
|
| 114 |
+
#### Testing Data
|
| 115 |
+
|
| 116 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 117 |
+
|
| 118 |
+
[More Information Needed]
|
| 119 |
+
|
| 120 |
+
#### Factors
|
| 121 |
+
|
| 122 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 123 |
+
|
| 124 |
+
[More Information Needed]
|
| 125 |
+
|
| 126 |
+
#### Metrics
|
| 127 |
+
|
| 128 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 129 |
+
|
| 130 |
+
[More Information Needed]
|
| 131 |
+
|
| 132 |
+
### Results
|
| 133 |
+
|
| 134 |
+
[More Information Needed]
|
| 135 |
+
|
| 136 |
+
#### Summary
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
## Model Examination [optional]
|
| 141 |
+
|
| 142 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 143 |
+
|
| 144 |
+
[More Information Needed]
|
| 145 |
+
|
| 146 |
+
## Environmental Impact
|
| 147 |
+
|
| 148 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 149 |
+
|
| 150 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 151 |
+
|
| 152 |
+
- **Hardware Type:** [More Information Needed]
|
| 153 |
+
- **Hours used:** [More Information Needed]
|
| 154 |
+
- **Cloud Provider:** [More Information Needed]
|
| 155 |
+
- **Compute Region:** [More Information Needed]
|
| 156 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 157 |
+
|
| 158 |
+
## Technical Specifications [optional]
|
| 159 |
+
|
| 160 |
+
### Model Architecture and Objective
|
| 161 |
+
|
| 162 |
+
[More Information Needed]
|
| 163 |
+
|
| 164 |
+
### Compute Infrastructure
|
| 165 |
+
|
| 166 |
+
[More Information Needed]
|
| 167 |
+
|
| 168 |
+
#### Hardware
|
| 169 |
+
|
| 170 |
+
[More Information Needed]
|
| 171 |
+
|
| 172 |
+
#### Software
|
| 173 |
+
|
| 174 |
+
[More Information Needed]
|
| 175 |
+
|
| 176 |
+
## Citation [optional]
|
| 177 |
+
|
| 178 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 179 |
+
|
| 180 |
+
**BibTeX:**
|
| 181 |
+
|
| 182 |
+
[More Information Needed]
|
| 183 |
+
|
| 184 |
+
**APA:**
|
| 185 |
+
|
| 186 |
+
[More Information Needed]
|
| 187 |
+
|
| 188 |
+
## Glossary [optional]
|
| 189 |
+
|
| 190 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 191 |
+
|
| 192 |
+
[More Information Needed]
|
| 193 |
+
|
| 194 |
+
## More Information [optional]
|
| 195 |
+
|
| 196 |
+
[More Information Needed]
|
| 197 |
+
|
| 198 |
+
## Model Card Authors [optional]
|
| 199 |
+
|
| 200 |
+
[More Information Needed]
|
| 201 |
+
|
| 202 |
+
## Model Card Contact
|
| 203 |
+
|
| 204 |
+
[More Information Needed]
|
| 205 |
+
### Framework versions
|
| 206 |
+
|
| 207 |
+
- PEFT 0.17.1
|
checkpoint-150/adapter_config.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"corda_config": null,
|
| 7 |
+
"eva_config": null,
|
| 8 |
+
"exclude_modules": null,
|
| 9 |
+
"fan_in_fan_out": false,
|
| 10 |
+
"inference_mode": true,
|
| 11 |
+
"init_lora_weights": true,
|
| 12 |
+
"layer_replication": null,
|
| 13 |
+
"layers_pattern": null,
|
| 14 |
+
"layers_to_transform": null,
|
| 15 |
+
"loftq_config": {},
|
| 16 |
+
"lora_alpha": 32,
|
| 17 |
+
"lora_bias": false,
|
| 18 |
+
"lora_dropout": 0.05,
|
| 19 |
+
"megatron_config": null,
|
| 20 |
+
"megatron_core": "megatron.core",
|
| 21 |
+
"modules_to_save": null,
|
| 22 |
+
"peft_type": "LORA",
|
| 23 |
+
"qalora_group_size": 16,
|
| 24 |
+
"r": 16,
|
| 25 |
+
"rank_pattern": {},
|
| 26 |
+
"revision": null,
|
| 27 |
+
"target_modules": [
|
| 28 |
+
"gate_proj",
|
| 29 |
+
"v_proj",
|
| 30 |
+
"k_proj",
|
| 31 |
+
"up_proj",
|
| 32 |
+
"q_proj",
|
| 33 |
+
"o_proj",
|
| 34 |
+
"down_proj"
|
| 35 |
+
],
|
| 36 |
+
"target_parameters": null,
|
| 37 |
+
"task_type": "CAUSAL_LM",
|
| 38 |
+
"trainable_token_indices": null,
|
| 39 |
+
"use_dora": false,
|
| 40 |
+
"use_qalora": false,
|
| 41 |
+
"use_rslora": false
|
| 42 |
+
}
|
checkpoint-150/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22ed7aa559302b2aa911b5941fb8006fa71a5d3b93130f0d233083d40bfba240
|
| 3 |
+
size 35668592
|
checkpoint-150/chat_template.jinja
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{% for message in messages %}{% if message['role'] == 'system' %}{{'<|system|>
|
| 2 |
+
' + message['content'] + '<|end|>
|
| 3 |
+
'}}{% elif message['role'] == 'user' %}{{'<|user|>
|
| 4 |
+
' + message['content'] + '<|end|>
|
| 5 |
+
'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>
|
| 6 |
+
' + message['content'] + '<|end|>
|
| 7 |
+
'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>
|
| 8 |
+
' }}{% else %}{{ eos_token }}{% endif %}
|
checkpoint-150/optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:90d67a6ced8139420c5f561da5be810b7072863f0cd41ae728d9bc9274e026a4
|
| 3 |
+
size 71410938
|
checkpoint-150/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fc297314363c47f471e4c663bb1a91e44ac118f5d58e0c5023be7655e94ea928
|
| 3 |
+
size 14244
|
checkpoint-150/scaler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0bb9a43383d7ed0fc51a851e6a3c6b272b5056ec259d10618304fa6dd704548f
|
| 3 |
+
size 988
|
checkpoint-150/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b259a97d34c7f44fb5b4e2d770a592880cc080f78a1d7b8a9c5d93bf56726ae2
|
| 3 |
+
size 1064
|
checkpoint-150/special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|endoftext|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "<|endoftext|>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<unk>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
checkpoint-150/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-150/tokenizer_config.json
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": null,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": true,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": false
|
| 29 |
+
},
|
| 30 |
+
"32000": {
|
| 31 |
+
"content": "<|endoftext|>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"32001": {
|
| 39 |
+
"content": "<|assistant|>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": true,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"32002": {
|
| 47 |
+
"content": "<|placeholder1|>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": true,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"32003": {
|
| 55 |
+
"content": "<|placeholder2|>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": true,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
},
|
| 62 |
+
"32004": {
|
| 63 |
+
"content": "<|placeholder3|>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": true,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": true
|
| 69 |
+
},
|
| 70 |
+
"32005": {
|
| 71 |
+
"content": "<|placeholder4|>",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": true,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": true
|
| 77 |
+
},
|
| 78 |
+
"32006": {
|
| 79 |
+
"content": "<|system|>",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": false,
|
| 82 |
+
"rstrip": true,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": true
|
| 85 |
+
},
|
| 86 |
+
"32007": {
|
| 87 |
+
"content": "<|end|>",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": true,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": true
|
| 93 |
+
},
|
| 94 |
+
"32008": {
|
| 95 |
+
"content": "<|placeholder5|>",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": true,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": true
|
| 101 |
+
},
|
| 102 |
+
"32009": {
|
| 103 |
+
"content": "<|placeholder6|>",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": false,
|
| 106 |
+
"rstrip": true,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": true
|
| 109 |
+
},
|
| 110 |
+
"32010": {
|
| 111 |
+
"content": "<|user|>",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": false,
|
| 114 |
+
"rstrip": true,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": true
|
| 117 |
+
}
|
| 118 |
+
},
|
| 119 |
+
"bos_token": "<s>",
|
| 120 |
+
"clean_up_tokenization_spaces": false,
|
| 121 |
+
"eos_token": "<|endoftext|>",
|
| 122 |
+
"extra_special_tokens": {},
|
| 123 |
+
"legacy": false,
|
| 124 |
+
"model_max_length": 4096,
|
| 125 |
+
"pad_token": "<|endoftext|>",
|
| 126 |
+
"padding_side": "right",
|
| 127 |
+
"sp_model_kwargs": {},
|
| 128 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 129 |
+
"unk_token": "<unk>",
|
| 130 |
+
"use_default_system_prompt": false
|
| 131 |
+
}
|
checkpoint-150/trainer_state.json
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": 150,
|
| 3 |
+
"best_metric": 0.22141291201114655,
|
| 4 |
+
"best_model_checkpoint": "./phi3-payments-reverse-finetuned\\checkpoint-150",
|
| 5 |
+
"epoch": 3.0,
|
| 6 |
+
"eval_steps": 50,
|
| 7 |
+
"global_step": 150,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.2,
|
| 14 |
+
"grad_norm": 1.149180293083191,
|
| 15 |
+
"learning_rate": 3.6e-05,
|
| 16 |
+
"loss": 2.0358,
|
| 17 |
+
"step": 10
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.4,
|
| 21 |
+
"grad_norm": 0.7529087662696838,
|
| 22 |
+
"learning_rate": 7.6e-05,
|
| 23 |
+
"loss": 1.798,
|
| 24 |
+
"step": 20
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.6,
|
| 28 |
+
"grad_norm": 0.9188901782035828,
|
| 29 |
+
"learning_rate": 0.000116,
|
| 30 |
+
"loss": 1.2619,
|
| 31 |
+
"step": 30
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 0.8,
|
| 35 |
+
"grad_norm": 0.5950552225112915,
|
| 36 |
+
"learning_rate": 0.00015600000000000002,
|
| 37 |
+
"loss": 0.7113,
|
| 38 |
+
"step": 40
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 1.0,
|
| 42 |
+
"grad_norm": 0.5578396320343018,
|
| 43 |
+
"learning_rate": 0.000196,
|
| 44 |
+
"loss": 0.4846,
|
| 45 |
+
"step": 50
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 1.0,
|
| 49 |
+
"eval_loss": 0.40434688329696655,
|
| 50 |
+
"eval_runtime": 23.0633,
|
| 51 |
+
"eval_samples_per_second": 2.168,
|
| 52 |
+
"eval_steps_per_second": 2.168,
|
| 53 |
+
"step": 50
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"epoch": 1.2,
|
| 57 |
+
"grad_norm": 0.7984590530395508,
|
| 58 |
+
"learning_rate": 0.000182,
|
| 59 |
+
"loss": 0.3761,
|
| 60 |
+
"step": 60
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"epoch": 1.4,
|
| 64 |
+
"grad_norm": 0.4209927022457123,
|
| 65 |
+
"learning_rate": 0.000162,
|
| 66 |
+
"loss": 0.2922,
|
| 67 |
+
"step": 70
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"epoch": 1.6,
|
| 71 |
+
"grad_norm": 0.361447811126709,
|
| 72 |
+
"learning_rate": 0.000142,
|
| 73 |
+
"loss": 0.2698,
|
| 74 |
+
"step": 80
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"epoch": 1.8,
|
| 78 |
+
"grad_norm": 0.3857899010181427,
|
| 79 |
+
"learning_rate": 0.000122,
|
| 80 |
+
"loss": 0.2565,
|
| 81 |
+
"step": 90
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"epoch": 2.0,
|
| 85 |
+
"grad_norm": 0.30109161138534546,
|
| 86 |
+
"learning_rate": 0.00010200000000000001,
|
| 87 |
+
"loss": 0.2459,
|
| 88 |
+
"step": 100
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"epoch": 2.0,
|
| 92 |
+
"eval_loss": 0.23627299070358276,
|
| 93 |
+
"eval_runtime": 20.8349,
|
| 94 |
+
"eval_samples_per_second": 2.4,
|
| 95 |
+
"eval_steps_per_second": 2.4,
|
| 96 |
+
"step": 100
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
"epoch": 2.2,
|
| 100 |
+
"grad_norm": 0.3074338436126709,
|
| 101 |
+
"learning_rate": 8.2e-05,
|
| 102 |
+
"loss": 0.2316,
|
| 103 |
+
"step": 110
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"epoch": 2.4,
|
| 107 |
+
"grad_norm": 0.2675539255142212,
|
| 108 |
+
"learning_rate": 6.2e-05,
|
| 109 |
+
"loss": 0.2214,
|
| 110 |
+
"step": 120
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"epoch": 2.6,
|
| 114 |
+
"grad_norm": 0.31314000487327576,
|
| 115 |
+
"learning_rate": 4.2e-05,
|
| 116 |
+
"loss": 0.2211,
|
| 117 |
+
"step": 130
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"epoch": 2.8,
|
| 121 |
+
"grad_norm": 0.3342994451522827,
|
| 122 |
+
"learning_rate": 2.2000000000000003e-05,
|
| 123 |
+
"loss": 0.2224,
|
| 124 |
+
"step": 140
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
"epoch": 3.0,
|
| 128 |
+
"grad_norm": 0.33048316836357117,
|
| 129 |
+
"learning_rate": 2.0000000000000003e-06,
|
| 130 |
+
"loss": 0.2158,
|
| 131 |
+
"step": 150
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"epoch": 3.0,
|
| 135 |
+
"eval_loss": 0.22141291201114655,
|
| 136 |
+
"eval_runtime": 17.435,
|
| 137 |
+
"eval_samples_per_second": 2.868,
|
| 138 |
+
"eval_steps_per_second": 2.868,
|
| 139 |
+
"step": 150
|
| 140 |
+
}
|
| 141 |
+
],
|
| 142 |
+
"logging_steps": 10,
|
| 143 |
+
"max_steps": 150,
|
| 144 |
+
"num_input_tokens_seen": 0,
|
| 145 |
+
"num_train_epochs": 3,
|
| 146 |
+
"save_steps": 100,
|
| 147 |
+
"stateful_callbacks": {
|
| 148 |
+
"TrainerControl": {
|
| 149 |
+
"args": {
|
| 150 |
+
"should_epoch_stop": false,
|
| 151 |
+
"should_evaluate": false,
|
| 152 |
+
"should_log": false,
|
| 153 |
+
"should_save": true,
|
| 154 |
+
"should_training_stop": true
|
| 155 |
+
},
|
| 156 |
+
"attributes": {}
|
| 157 |
+
}
|
| 158 |
+
},
|
| 159 |
+
"total_flos": 1.3755771518976e+16,
|
| 160 |
+
"train_batch_size": 1,
|
| 161 |
+
"trial_name": null,
|
| 162 |
+
"trial_params": null
|
| 163 |
+
}
|
checkpoint-150/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24f90672e9aadeb1cee3d6335a1992fa5225b90bc948cee5a8175a6e01426a28
|
| 3 |
+
size 5368
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|endoftext|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "<|endoftext|>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<unk>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": null,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": true,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": false
|
| 29 |
+
},
|
| 30 |
+
"32000": {
|
| 31 |
+
"content": "<|endoftext|>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"32001": {
|
| 39 |
+
"content": "<|assistant|>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": true,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"32002": {
|
| 47 |
+
"content": "<|placeholder1|>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": true,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"32003": {
|
| 55 |
+
"content": "<|placeholder2|>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": true,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
},
|
| 62 |
+
"32004": {
|
| 63 |
+
"content": "<|placeholder3|>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": true,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": true
|
| 69 |
+
},
|
| 70 |
+
"32005": {
|
| 71 |
+
"content": "<|placeholder4|>",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": true,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": true
|
| 77 |
+
},
|
| 78 |
+
"32006": {
|
| 79 |
+
"content": "<|system|>",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": false,
|
| 82 |
+
"rstrip": true,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": true
|
| 85 |
+
},
|
| 86 |
+
"32007": {
|
| 87 |
+
"content": "<|end|>",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": true,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": true
|
| 93 |
+
},
|
| 94 |
+
"32008": {
|
| 95 |
+
"content": "<|placeholder5|>",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": true,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": true
|
| 101 |
+
},
|
| 102 |
+
"32009": {
|
| 103 |
+
"content": "<|placeholder6|>",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": false,
|
| 106 |
+
"rstrip": true,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": true
|
| 109 |
+
},
|
| 110 |
+
"32010": {
|
| 111 |
+
"content": "<|user|>",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": false,
|
| 114 |
+
"rstrip": true,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": true
|
| 117 |
+
}
|
| 118 |
+
},
|
| 119 |
+
"bos_token": "<s>",
|
| 120 |
+
"clean_up_tokenization_spaces": false,
|
| 121 |
+
"eos_token": "<|endoftext|>",
|
| 122 |
+
"extra_special_tokens": {},
|
| 123 |
+
"legacy": false,
|
| 124 |
+
"model_max_length": 4096,
|
| 125 |
+
"pad_token": "<|endoftext|>",
|
| 126 |
+
"padding_side": "right",
|
| 127 |
+
"sp_model_kwargs": {},
|
| 128 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 129 |
+
"unk_token": "<unk>",
|
| 130 |
+
"use_default_system_prompt": false
|
| 131 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24f90672e9aadeb1cee3d6335a1992fa5225b90bc948cee5a8175a6e01426a28
|
| 3 |
+
size 5368
|