--- library_name: transformers license: mit base_model: intfloat/e5-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: intfloat-e5-base-arabic-fp16-allagree results: [] --- # intfloat-e5-base-arabic-fp16-allagree This model is a fine-tuned version of [intfloat/e5-base](https://huggingface.co/intfloat/e5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4020 - Accuracy: 0.8554 - Precision: 0.8542 - Recall: 0.8554 - F1: 0.8547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0217 | 0.7463 | 50 | 0.8492 | 0.6707 | 0.7400 | 0.6707 | 0.5976 | | 0.774 | 1.4925 | 100 | 0.6322 | 0.7612 | 0.7671 | 0.7612 | 0.7222 | | 0.6181 | 2.2388 | 150 | 0.5103 | 0.8190 | 0.8151 | 0.8190 | 0.8113 | | 0.5497 | 2.9851 | 200 | 0.4699 | 0.8218 | 0.8175 | 0.8218 | 0.8182 | | 0.4594 | 3.7313 | 250 | 0.4475 | 0.8330 | 0.8330 | 0.8330 | 0.8304 | | 0.4155 | 4.4776 | 300 | 0.4371 | 0.8218 | 0.8337 | 0.8218 | 0.8241 | | 0.3722 | 5.2239 | 350 | 0.4166 | 0.8461 | 0.8423 | 0.8461 | 0.8427 | | 0.3382 | 5.9701 | 400 | 0.4301 | 0.8340 | 0.8483 | 0.8340 | 0.8381 | | 0.3087 | 6.7164 | 450 | 0.3906 | 0.8489 | 0.8476 | 0.8489 | 0.8461 | | 0.2695 | 7.4627 | 500 | 0.4020 | 0.8601 | 0.8585 | 0.8601 | 0.8588 | | 0.2685 | 8.2090 | 550 | 0.4136 | 0.8601 | 0.8601 | 0.8601 | 0.8592 | | 0.2451 | 8.9552 | 600 | 0.4020 | 0.8554 | 0.8542 | 0.8554 | 0.8547 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0