ahmedmajid92 commited on
Commit
76928c9
·
verified ·
1 Parent(s): f717363

Upload example_usage.py

Browse files
Files changed (1) hide show
  1. example_usage.py +93 -0
example_usage.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Example script to test the Arabic Message Classification Model
4
+ """
5
+
6
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
7
+ import torch
8
+
9
+ def main():
10
+ # Model name - replace with your actual model name on Hugging Face
11
+ model_name = "ahmedmajid92/Arabic_MI_Classifier"
12
+
13
+ print("Loading Arabic Message Classification Model...")
14
+ print(f"Model: {model_name}")
15
+
16
+ try:
17
+ # Load tokenizer and model
18
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
19
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
20
+
21
+ # Create classification pipeline
22
+ device = 0 if torch.cuda.is_available() else -1
23
+ classifier = pipeline(
24
+ "text-classification",
25
+ model=model,
26
+ tokenizer=tokenizer,
27
+ device=device
28
+ )
29
+
30
+ print(f"Model loaded successfully!")
31
+ print(f"Using device: {'GPU' if device >= 0 else 'CPU'}")
32
+ print("-" * 50)
33
+
34
+ # Test examples
35
+ test_examples = [
36
+ "السلام عليكم ورحمة الله وبركاته", # greeting
37
+ "هلو شلونك اليوم؟", # greeting + question
38
+ "متى يبدأ الاجتماع؟", # question
39
+ "عندي مشكلة بالانترنت", # complaint
40
+ "أحب القراءة والكتابة", # general
41
+ "الكهرباء نفطت", # complaint (Iraqi)
42
+ "شنو الأخبار؟", # question (Iraqi)
43
+ "تحية طيبة", # greeting
44
+ "أعمل مهندساً في شركة تقنية", # general
45
+ "الطابعة ما تطبع" # complaint (Iraqi)
46
+ ]
47
+
48
+ print("Testing with example messages:")
49
+ print("=" * 60)
50
+
51
+ for i, text in enumerate(test_examples, 1):
52
+ result = classifier(text)[0]
53
+ label = result['label']
54
+ confidence = result['score']
55
+
56
+ print(f"{i:2d}. Text: {text}")
57
+ print(f" → Label: {label}")
58
+ print(f" → Confidence: {confidence:.4f}")
59
+ print()
60
+
61
+ print("=" * 60)
62
+ print("Interactive mode - Enter your own text (or 'quit' to exit):")
63
+
64
+ while True:
65
+ user_input = input("\nEnter Arabic text: ").strip()
66
+
67
+ if user_input.lower() in ['quit', 'exit', 'q']:
68
+ print("Goodbye!")
69
+ break
70
+
71
+ if not user_input:
72
+ continue
73
+
74
+ try:
75
+ result = classifier(user_input)[0]
76
+ label = result['label']
77
+ confidence = result['score']
78
+
79
+ print(f"→ Label: {label}")
80
+ print(f"→ Confidence: {confidence:.4f}")
81
+
82
+ except Exception as e:
83
+ print(f"Error processing text: {e}")
84
+
85
+ except Exception as e:
86
+ print(f"Error loading model: {e}")
87
+ print("Make sure to:")
88
+ print("1. Install required packages: pip install transformers torch")
89
+ print("2. Update the model_name variable with your actual model name")
90
+ print("3. Check your internet connection")
91
+
92
+ if __name__ == "__main__":
93
+ main()