akar49 commited on
Commit
172944d
·
1 Parent(s): 44f50af

End of training

Browse files
Files changed (4) hide show
  1. README.md +55 -0
  2. config.json +23 -0
  3. preprocessor_config.json +22 -0
  4. tf_model.h5 +3 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_keras_callback
4
+ model-index:
5
+ - name: akar49/mri_classifier
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information Keras had access to. You should
10
+ probably proofread and complete it, then remove this comment. -->
11
+
12
+ # akar49/mri_classifier
13
+
14
+ This model is a fine-tuned version of [akar49/ViTonMRI](https://huggingface.co/akar49/ViTonMRI) on an unknown dataset.
15
+ It achieves the following results on the evaluation set:
16
+ - Train Loss: 0.3841
17
+ - Validation Loss: 0.3693
18
+ - Train Accuracy: 0.8776
19
+ - Epoch: 2
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - optimizer: {'name': 'SGD', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'momentum': 0.0, 'nesterov': False}
39
+ - training_precision: float32
40
+
41
+ ### Training results
42
+
43
+ | Train Loss | Validation Loss | Train Accuracy | Epoch |
44
+ |:----------:|:---------------:|:--------------:|:-----:|
45
+ | 0.6434 | 0.5898 | 0.7792 | 0 |
46
+ | 0.5207 | 0.4672 | 0.8551 | 1 |
47
+ | 0.3841 | 0.3693 | 0.8776 | 2 |
48
+
49
+
50
+ ### Framework versions
51
+
52
+ - Transformers 4.30.2
53
+ - TensorFlow 2.12.0
54
+ - Datasets 2.13.1
55
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "akar49/ViTonMRI",
3
+ "architectures": [
4
+ "ViTForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "encoder_stride": 16,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.0,
10
+ "hidden_size": 768,
11
+ "image_size": 224,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "model_type": "vit",
16
+ "num_attention_heads": 12,
17
+ "num_channels": 3,
18
+ "num_hidden_layers": 12,
19
+ "patch_size": 16,
20
+ "qkv_bias": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.30.2"
23
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_rescale": true,
4
+ "do_resize": true,
5
+ "image_mean": [
6
+ 0.5,
7
+ 0.5,
8
+ 0.5
9
+ ],
10
+ "image_processor_type": "ViTImageProcessor",
11
+ "image_std": [
12
+ 0.5,
13
+ 0.5,
14
+ 0.5
15
+ ],
16
+ "resample": 2,
17
+ "rescale_factor": 0.00392156862745098,
18
+ "size": {
19
+ "height": 224,
20
+ "width": 224
21
+ }
22
+ }
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13b5ee7717cae1a15a9387580320777fe859e8e90c2702b85226d97ad5a9f27c
3
+ size 343486136