--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: akar49/mri_classifier results: [] --- # akar49/mri_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1032 - Validation Loss: 0.1556 - Train Accuracy: 0.9367 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'SGD', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'momentum': 0.0, 'nesterov': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.6447 | 0.6133 | 0.7004 | 0 | | 0.5405 | 0.5010 | 0.8256 | 1 | | 0.4181 | 0.3917 | 0.8650 | 2 | | 0.3122 | 0.3189 | 0.9058 | 3 | | 0.2474 | 0.3069 | 0.8875 | 4 | | 0.2021 | 0.2733 | 0.9044 | 5 | | 0.1745 | 0.2455 | 0.9100 | 6 | | 0.1591 | 0.2203 | 0.9212 | 7 | | 0.1450 | 0.2350 | 0.9142 | 8 | | 0.1397 | 0.2122 | 0.9198 | 9 | | 0.1227 | 0.2098 | 0.9212 | 10 | | 0.1169 | 0.1754 | 0.9325 | 11 | | 0.1080 | 0.1782 | 0.9339 | 12 | | 0.0971 | 0.1705 | 0.9353 | 13 | | 0.1032 | 0.1556 | 0.9367 | 14 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3