Upload 3 files
Browse files- config.json +12 -0
- model.py +230 -0
- model.safetensors +3 -0
config.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "bulkformer",
|
| 3 |
+
"num_genes": 19357,
|
| 4 |
+
"dim": 320,
|
| 5 |
+
"gb_repeat": 1,
|
| 6 |
+
"bins": 10,
|
| 7 |
+
"bin_head": 8,
|
| 8 |
+
"full_head": 4,
|
| 9 |
+
"p_repeat": 2,
|
| 10 |
+
"training_epoch": 4,
|
| 11 |
+
"final_loss": 0.2695700265943767
|
| 12 |
+
}
|
model.py
ADDED
|
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ------------------------------------------------------------
|
| 2 |
+
# CancerTranscriptome-Mini-48M
|
| 3 |
+
# Model: Lightweight adaptation of BulkFormer
|
| 4 |
+
# Author: Walter Alvarado (NASA Ames Research Center)
|
| 5 |
+
# License: MIT
|
| 6 |
+
#
|
| 7 |
+
# References:
|
| 8 |
+
# (1) Boming Kang, Rui Fan, Meizheng Yi, Chunmei Cui, Qinghua Cui.
|
| 9 |
+
# “A large-scale foundation model for bulk transcriptomes.”
|
| 10 |
+
# bioRxiv (2025). doi:10.1101/2025.06.11.659222
|
| 11 |
+
#
|
| 12 |
+
# (2) Alvarado W. “CancerTranscriptome-Mini-48M: A compact cancer-
|
| 13 |
+
# focused BulkFormer derivative.” https://github.com/alwalt/BioFM
|
| 14 |
+
#
|
| 15 |
+
# Data Source:
|
| 16 |
+
# ARCHS4 Human RNA-seq v2.5 (Lachmann et al., Nat Commun 2018)
|
| 17 |
+
# ------------------------------------------------------------
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
from torch_geometric.nn.conv import GCNConv
|
| 22 |
+
from performer_pytorch import Performer
|
| 23 |
+
|
| 24 |
+
# Default model hyperparameters
|
| 25 |
+
model_params = {
|
| 26 |
+
"dim": 320,
|
| 27 |
+
"bins": 10,
|
| 28 |
+
"gb_repeat": 1,
|
| 29 |
+
"p_repeat": 2,
|
| 30 |
+
"bin_head": 8,
|
| 31 |
+
"full_head": 4,
|
| 32 |
+
"gene_length": 19357
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
# ------------------------------------------------------------
|
| 36 |
+
# Rotary Expression Embedding (REE)
|
| 37 |
+
# ------------------------------------------------------------
|
| 38 |
+
|
| 39 |
+
class PositionalExprEmbedding(nn.Module):
|
| 40 |
+
"""
|
| 41 |
+
Rotary Expression Embedding (REE):
|
| 42 |
+
Converts continuous gene expression values into a sinusoidal
|
| 43 |
+
embedding usable by Performer/Transformer blocks. Deterministic,
|
| 44 |
+
not learned. Masked positions (-10) → zero vector.
|
| 45 |
+
"""
|
| 46 |
+
def __init__(self, dim, mask_token=-10):
|
| 47 |
+
super().__init__()
|
| 48 |
+
self.mask_token = mask_token
|
| 49 |
+
self.inv_freq = nn.Parameter(
|
| 50 |
+
1.0 / (100 ** (torch.arange(0, dim, 2).float() / dim)),
|
| 51 |
+
requires_grad=False
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
def forward(self, x):
|
| 55 |
+
mask = (x == self.mask_token).nonzero(as_tuple=False)
|
| 56 |
+
x = torch.einsum("bi,j->bij", x, self.inv_freq)
|
| 57 |
+
x = torch.cat([x.sin(), x.cos()], dim=-1)
|
| 58 |
+
x[mask[:, 0], mask[:, 1]] = 0
|
| 59 |
+
return x
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# ------------------------------------------------------------
|
| 63 |
+
# GBFormer Block (Graph + Local Performer + Global Performer)
|
| 64 |
+
# ------------------------------------------------------------
|
| 65 |
+
|
| 66 |
+
class GBFormer(nn.Module):
|
| 67 |
+
"""
|
| 68 |
+
A single GBFormer block:
|
| 69 |
+
- LayerNorm
|
| 70 |
+
- GCNConv (gene-gene propagation)
|
| 71 |
+
- Binning by learned importance score
|
| 72 |
+
- Local Performer per-bin
|
| 73 |
+
- Global Performer
|
| 74 |
+
"""
|
| 75 |
+
def __init__(self, dim, gene_length, bin_head, full_head, bins, p_repeat):
|
| 76 |
+
super().__init__()
|
| 77 |
+
|
| 78 |
+
self.dim = dim
|
| 79 |
+
self.bins = bins
|
| 80 |
+
self.bin_head = bin_head
|
| 81 |
+
self.full_head = full_head
|
| 82 |
+
self.p_repeat = p_repeat
|
| 83 |
+
|
| 84 |
+
self.layernorm = nn.LayerNorm(dim)
|
| 85 |
+
self.gcn = GCNConv(dim, dim, cached=True, add_self_loops=False)
|
| 86 |
+
|
| 87 |
+
# Learn scoring → assign gene to bin
|
| 88 |
+
self.which_bin = nn.Linear(dim, 1)
|
| 89 |
+
|
| 90 |
+
# Local Performer per bin
|
| 91 |
+
self.bin_layers = nn.ModuleList([
|
| 92 |
+
Performer(
|
| 93 |
+
dim=dim,
|
| 94 |
+
heads=bin_head,
|
| 95 |
+
depth=1,
|
| 96 |
+
dim_head=dim // bin_head,
|
| 97 |
+
attn_dropout=0.2,
|
| 98 |
+
ff_dropout=0.2
|
| 99 |
+
)
|
| 100 |
+
for _ in range(bins)
|
| 101 |
+
])
|
| 102 |
+
|
| 103 |
+
# Global Performer stack
|
| 104 |
+
self.global_layers = nn.Sequential(*[
|
| 105 |
+
Performer(
|
| 106 |
+
dim=dim,
|
| 107 |
+
heads=full_head,
|
| 108 |
+
depth=1,
|
| 109 |
+
dim_head=dim // full_head
|
| 110 |
+
)
|
| 111 |
+
for _ in range(p_repeat)
|
| 112 |
+
])
|
| 113 |
+
|
| 114 |
+
def forward(self, x, graph):
|
| 115 |
+
B, G, D = x.shape
|
| 116 |
+
|
| 117 |
+
x = self.layernorm(x)
|
| 118 |
+
x = x + self.gcn(x, graph) # residual GCN update
|
| 119 |
+
|
| 120 |
+
if self.bins > 0:
|
| 121 |
+
scores = self.which_bin(x).squeeze(-1) # [B, G]
|
| 122 |
+
order = torch.argsort(scores, dim=1, descending=True)
|
| 123 |
+
order_full = order.unsqueeze(-1).expand(-1, -1, D)
|
| 124 |
+
|
| 125 |
+
x_sorted = x.gather(1, order_full)
|
| 126 |
+
bin_size = (G - 1) // self.bins + 1
|
| 127 |
+
chunks = torch.split(x_sorted, bin_size, dim=1)
|
| 128 |
+
|
| 129 |
+
processed = [
|
| 130 |
+
layer(chunk)
|
| 131 |
+
for chunk, layer in zip(chunks, self.bin_layers)
|
| 132 |
+
]
|
| 133 |
+
|
| 134 |
+
x_cat = torch.cat(processed, dim=1)
|
| 135 |
+
x = torch.empty_like(x_cat).scatter_(1, order_full, x_cat)
|
| 136 |
+
|
| 137 |
+
x = self.global_layers(x)
|
| 138 |
+
return x
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
# ------------------------------------------------------------
|
| 142 |
+
# Full BulkFormer Model
|
| 143 |
+
# ------------------------------------------------------------
|
| 144 |
+
|
| 145 |
+
class BulkFormer(nn.Module):
|
| 146 |
+
"""
|
| 147 |
+
CancerTranscriptome-Mini-48M:
|
| 148 |
+
A compact BulkFormer-style masked-expression model.
|
| 149 |
+
Combines:
|
| 150 |
+
- ESM2 gene identity embeddings
|
| 151 |
+
- Rotary Expression Embeddings (REE)
|
| 152 |
+
- Graph Convolution (GCNConv)
|
| 153 |
+
- Local/global Performer attention
|
| 154 |
+
- Optional intermediate repr_layers for feature extraction
|
| 155 |
+
"""
|
| 156 |
+
def __init__(
|
| 157 |
+
self,
|
| 158 |
+
dim,
|
| 159 |
+
graph,
|
| 160 |
+
gene_emb,
|
| 161 |
+
gene_length,
|
| 162 |
+
bin_head=4,
|
| 163 |
+
full_head=4,
|
| 164 |
+
bins=10,
|
| 165 |
+
gb_repeat=1,
|
| 166 |
+
p_repeat=1
|
| 167 |
+
):
|
| 168 |
+
super().__init__()
|
| 169 |
+
|
| 170 |
+
self.dim = dim
|
| 171 |
+
self.graph = graph
|
| 172 |
+
self.gene_length = gene_length
|
| 173 |
+
|
| 174 |
+
# Identity embeddings from ESM2 (trainable projection)
|
| 175 |
+
self.gene_emb = nn.Parameter(gene_emb)
|
| 176 |
+
self.gene_proj = nn.Sequential(
|
| 177 |
+
nn.Linear(gene_emb.shape[1], 4 * dim),
|
| 178 |
+
nn.ReLU(),
|
| 179 |
+
nn.Linear(4 * dim, dim)
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
# REE for expression
|
| 183 |
+
self.expr_emb = PositionalExprEmbedding(dim)
|
| 184 |
+
|
| 185 |
+
# Pre-attention mixing layer
|
| 186 |
+
self.mix = nn.Sequential(
|
| 187 |
+
nn.Linear(dim, 4 * dim),
|
| 188 |
+
nn.ReLU(),
|
| 189 |
+
nn.Linear(4 * dim, dim)
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
# Stacked GBFormer blocks
|
| 193 |
+
self.gb_blocks = nn.ModuleList([
|
| 194 |
+
GBFormer(dim, gene_length, bin_head, full_head, bins, p_repeat)
|
| 195 |
+
for _ in range(gb_repeat)
|
| 196 |
+
])
|
| 197 |
+
|
| 198 |
+
self.final_norm = nn.LayerNorm(dim)
|
| 199 |
+
|
| 200 |
+
# Output head → scalar prediction per gene
|
| 201 |
+
self.head = nn.Sequential(
|
| 202 |
+
nn.Linear(dim, 4 * dim),
|
| 203 |
+
nn.ReLU(),
|
| 204 |
+
nn.Linear(4 * dim, 1),
|
| 205 |
+
nn.ReLU()
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
def forward(self, x, repr_layers=None):
|
| 209 |
+
B, G = x.shape
|
| 210 |
+
hidden = {}
|
| 211 |
+
|
| 212 |
+
x = (
|
| 213 |
+
self.expr_emb(x) +
|
| 214 |
+
self.gene_proj(self.gene_emb) +
|
| 215 |
+
torch.zeros(B, 1, self.dim, device=x.device) # no AE latent in this version
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
x = self.mix(x)
|
| 219 |
+
|
| 220 |
+
for i, block in enumerate(self.gb_blocks):
|
| 221 |
+
x = block(x, self.graph)
|
| 222 |
+
if repr_layers and i in repr_layers:
|
| 223 |
+
hidden[i] = x
|
| 224 |
+
|
| 225 |
+
x = self.final_norm(x)
|
| 226 |
+
out = self.head(x).squeeze(-1)
|
| 227 |
+
|
| 228 |
+
if repr_layers:
|
| 229 |
+
return out, hidden
|
| 230 |
+
return out
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:06205e23331567f7c90e7338493fecef3e5d775349196966dbcda35175c5760b
|
| 3 |
+
size 253500552
|