Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +176 -0
- config.json +27 -0
- configuration_lime.py +48 -0
- logo.png +3 -0
- model.safetensors +3 -0
- modeling_lime.py +120 -0
- special_tokens_map.json +20 -0
- tokenizer.json +0 -0
- tokenizer_config.json +46 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
logo.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+

|
| 2 |
+
**LIME-1B Model Card**
|
| 3 |
+
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
> **Note**: This model serves as proof that a single individual, without any team or institutional backing, can develop an LLM that demonstrates competitive results.
|
| 7 |
+
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# LIME-1B
|
| 11 |
+
|
| 12 |
+
LIME-1B is a 1B-parameter, decoder-only Transformer language model trained from scratch on English web data and then instruction-tuned on a curated mixture of assistant-style datasets with and without retrieval context. It is designed as a **compact, practical base model** for:
|
| 13 |
+
|
| 14 |
+
- Building RAG systems (context + question → answer)
|
| 15 |
+
- Assistant-style Q&A and task completion
|
| 16 |
+
- Summarization, explanation, and rewriting tasks in English
|
| 17 |
+
|
| 18 |
+
> ⚠️ LIME-1B is **not** RLHF/DPO-aligned and does **not** have tool use or multi-turn chat training baked in. It is an instruction-tuned LM, not a fully aligned assistant like ChatGPT.
|
| 19 |
+
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
## 1. Model architecture
|
| 23 |
+
|
| 24 |
+
LIME-1B follows a modern GPT-style decoder-only Transformer with several quality-oriented design choices:
|
| 25 |
+
|
| 26 |
+
| Component | Value |
|
| 27 |
+
|-----------------------------|-------------------------|
|
| 28 |
+
| Architecture | Decoder-only Transformer |
|
| 29 |
+
| Parameters | 1.0B |
|
| 30 |
+
| Layers (decoder blocks) | 32 |
|
| 31 |
+
| d_model | 1536 |
|
| 32 |
+
| FFN dimension (d_ff) | 6144 |
|
| 33 |
+
| Attention heads | 24 |
|
| 34 |
+
| Vocabulary size | 50,000 |
|
| 35 |
+
| Max sequence length | 512 tokens |
|
| 36 |
+
| Positional encoding | Sinusoidal |
|
| 37 |
+
| Norm | `RMSNorm` |
|
| 38 |
+
| FFN | SiLU MLP |
|
| 39 |
+
| Attention | FlashAttention |
|
| 40 |
+
| Tying of embeddings | Output head tied to embedding |
|
| 41 |
+
| Precision (training) | Mixed fp32/bf16 (autocast) + grad clipping |
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
## 2. Training data
|
| 45 |
+
|
| 46 |
+
### 2.1 Pretraining
|
| 47 |
+
|
| 48 |
+
The base model is pretrained as a standard causal language model on English web data:
|
| 49 |
+
|
| 50 |
+
- **Corpus**: FineWeb-Edu (CC-MAIN-2025-05 split)
|
| 51 |
+
- **Language filter**: English-only subset
|
| 52 |
+
- **Objective**: next-token prediction (causal LM)
|
| 53 |
+
- **Token budget**: 20B tokens
|
| 54 |
+
- **Context length**: 512 tokens
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
### 2.2 Instruction fine-tuning (SFT)
|
| 58 |
+
|
| 59 |
+
After pretraining, the model is fine-tuned on a **unified instruction schema**:
|
| 60 |
+
|
| 61 |
+
```text
|
| 62 |
+
[context (optional)] <user> instruction_text <assistant> response_text <eos>
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
**SFT Data Mixture** (~97k examples total):
|
| 66 |
+
- [projecte-aina/RAG_Multilingual](https://huggingface.co/datasets/projecte-aina/RAG_Multilingual)
|
| 67 |
+
- [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k)
|
| 68 |
+
- [HuggingFaceH4/no_robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots)
|
| 69 |
+
- [CohereLabs/aya_dataset](https://huggingface.co/datasets/CohereLabs/aya_dataset)
|
| 70 |
+
- [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned)
|
| 71 |
+
|
| 72 |
+
## Training Details
|
| 73 |
+
|
| 74 |
+
### Hardware
|
| 75 |
+
- **GPUs**: 8 × NVIDIA A100 80GB (data parallel)
|
| 76 |
+
- **Precision**: bfloat16 with gradient clipping (max_norm = 1.0)
|
| 77 |
+
|
| 78 |
+
### Pretraining
|
| 79 |
+
|
| 80 |
+
**Objective**: Cross-entropy loss on next-token prediction
|
| 81 |
+
|
| 82 |
+
**Optimizer**: AdamW
|
| 83 |
+
- β₁ = 0.9
|
| 84 |
+
- β₂ = 0.95
|
| 85 |
+
- Weight decay applied to non-norm/non-bias parameters
|
| 86 |
+
|
| 87 |
+
**Learning Rate Schedule**:
|
| 88 |
+
- Peak LR: ~5e-4
|
| 89 |
+
- Polynomial decay to 5e-6
|
| 90 |
+
- Warmup: ~5% of total steps
|
| 91 |
+
|
| 92 |
+
### Instruction fine-tuning (SFT)
|
| 93 |
+
|
| 94 |
+
**Objective**: Cross-entropy loss on next-token prediction
|
| 95 |
+
|
| 96 |
+
**Optimizer**: AdamW
|
| 97 |
+
- β₁ = 0.9
|
| 98 |
+
- β₂ = 0.95
|
| 99 |
+
- Weight decay applied to non-norm/non-bias parameters
|
| 100 |
+
|
| 101 |
+
**Learning Rate Schedule**:
|
| 102 |
+
- Peak LR: 8e-5
|
| 103 |
+
- Polynomial decay to 1e-5
|
| 104 |
+
- Warmup: 10% of total steps
|
| 105 |
+
|
| 106 |
+
## Usage
|
| 107 |
+
```python
|
| 108 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 109 |
+
import torch
|
| 110 |
+
|
| 111 |
+
model_name = "anarlavrenov/LIME-1B"
|
| 112 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 113 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 114 |
+
model_name,
|
| 115 |
+
torch_dtype=torch.bfloat16,
|
| 116 |
+
device_map="auto",
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
def build_inference_prompt(context, question):
|
| 120 |
+
|
| 121 |
+
context_txt = clean_text(context) if context is not None else ""
|
| 122 |
+
question_txt = clean_text(question)
|
| 123 |
+
|
| 124 |
+
context_ids = tokenizer.encode(context_txt) if context_txt else []
|
| 125 |
+
question_ids = tokenizer.encode(question_txt)
|
| 126 |
+
|
| 127 |
+
uid = args.user_id
|
| 128 |
+
aid = args.assistant_id
|
| 129 |
+
|
| 130 |
+
ids = []
|
| 131 |
+
|
| 132 |
+
if context_ids:
|
| 133 |
+
ids.extend(context_ids)
|
| 134 |
+
ids.append(uid)
|
| 135 |
+
ids.extend(question_ids)
|
| 136 |
+
ids.append(aid)
|
| 137 |
+
|
| 138 |
+
return torch.tensor(ids, dtype=torch.long)
|
| 139 |
+
|
| 140 |
+
# Example usage
|
| 141 |
+
context = "..." # optional context
|
| 142 |
+
question = "Write five questions for a Data Scientist interview."
|
| 143 |
+
prompt = build_prompt(context, question)
|
| 144 |
+
|
| 145 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 146 |
+
outputs = model.generate(
|
| 147 |
+
**inputs,
|
| 148 |
+
max_new_tokens=256,
|
| 149 |
+
do_sample=True,
|
| 150 |
+
top_p=0.9,
|
| 151 |
+
temperature=0.5,
|
| 152 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 153 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 157 |
+
|
| 158 |
+
# 1. Can you tell us about your experience with data analysis and modeling?
|
| 159 |
+
# 2. How do you approach data cleaning and preprocessing?
|
| 160 |
+
# 3. How do you approach data visualization and storytelling?
|
| 161 |
+
# 4. Can you walk us through a time when you used data to solve a problem?
|
| 162 |
+
# 5. How do you approach the ethical considerations of data science and machine learning?
|
| 163 |
+
|
| 164 |
+
```
|
| 165 |
+
|
| 166 |
+
If you use LIME-1B in academic work or public products, please consider citing the model and the underlying datasets (FineWeb-Edu, Dolly, No Robots, Aya, Alpaca, RAG_Multilingual, etc.) according to their respective licenses and documentation.
|
| 167 |
+
|
| 168 |
+
## Citation
|
| 169 |
+
```bibtex
|
| 170 |
+
@misc{lime1b2025,
|
| 171 |
+
title = {LIME-1B: A 1B-parameter English Causal Language Model},
|
| 172 |
+
author = {Anar Lavrenov},
|
| 173 |
+
year = {2025},
|
| 174 |
+
howpublished = {\url{https://huggingface.co/anarlavrenov/LIME-1B}}
|
| 175 |
+
}
|
| 176 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"LIMEForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_lime.LIMEConfig",
|
| 7 |
+
"AutoModelForCausalLM": "modeling_lime.LIMEForCausalLM"
|
| 8 |
+
},
|
| 9 |
+
"d_model": 1536,
|
| 10 |
+
"dff": 6144,
|
| 11 |
+
"dropout_rate": 0.0,
|
| 12 |
+
"dtype": "float32",
|
| 13 |
+
"eos_token_id": 1,
|
| 14 |
+
"is_decoder": true,
|
| 15 |
+
"max_position_embeddings": 512,
|
| 16 |
+
"model_type": "lime",
|
| 17 |
+
"multiple_of": 256,
|
| 18 |
+
"num_decoder_layers": 32,
|
| 19 |
+
"num_encoder_layers": 0,
|
| 20 |
+
"num_heads": 24,
|
| 21 |
+
"pad_token_id": 0,
|
| 22 |
+
"transformers_version": "4.57.3",
|
| 23 |
+
"use_cache": false,
|
| 24 |
+
"use_encoder": false,
|
| 25 |
+
"use_flash": true,
|
| 26 |
+
"vocab_size": 50000
|
| 27 |
+
}
|
configuration_lime.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class LIMEConfig(PretrainedConfig):
|
| 5 |
+
model_type = "lime"
|
| 6 |
+
|
| 7 |
+
def __init__(
|
| 8 |
+
self,
|
| 9 |
+
vocab_size=50000,
|
| 10 |
+
d_model=1536,
|
| 11 |
+
num_encoder_layers=0,
|
| 12 |
+
num_decoder_layers=32,
|
| 13 |
+
num_heads=24,
|
| 14 |
+
dff=6144,
|
| 15 |
+
dropout_rate=0.0,
|
| 16 |
+
max_position_embeddings=512,
|
| 17 |
+
pad_token_id=0,
|
| 18 |
+
eos_token_id=1,
|
| 19 |
+
use_encoder=False,
|
| 20 |
+
use_flash=True,
|
| 21 |
+
multiple_of=256,
|
| 22 |
+
**kwargs
|
| 23 |
+
):
|
| 24 |
+
super().__init__(
|
| 25 |
+
pad_token_id=pad_token_id,
|
| 26 |
+
eos_token_id=eos_token_id,
|
| 27 |
+
**kwargs
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
self.vocab_size = vocab_size
|
| 31 |
+
self.d_model = d_model
|
| 32 |
+
self.num_encoder_layers = num_encoder_layers
|
| 33 |
+
self.num_decoder_layers = num_decoder_layers
|
| 34 |
+
self.num_heads = num_heads
|
| 35 |
+
self.dff = dff
|
| 36 |
+
self.dropout_rate = dropout_rate
|
| 37 |
+
self.max_position_embeddings = max_position_embeddings
|
| 38 |
+
self.pad_token_id = pad_token_id
|
| 39 |
+
self.eos_token_id = eos_token_id
|
| 40 |
+
self.use_encoder = use_encoder
|
| 41 |
+
self.use_flash = use_flash
|
| 42 |
+
self.multiple_of = multiple_of
|
| 43 |
+
|
| 44 |
+
# For Transformers library.
|
| 45 |
+
self.is_decoder = True
|
| 46 |
+
self.is_encoder_decoder = False
|
| 47 |
+
self.tie_word_embeddings = True
|
| 48 |
+
self.use_cache = False
|
logo.png
ADDED
|
Git LFS Details
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:86a8bb74eac1976913c500149defc4a2f43c24b7f534260843db7727ddf69634
|
| 3 |
+
size 3937660880
|
modeling_lime.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from transformers import PreTrainedModel
|
| 4 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 5 |
+
from typing import Optional, Tuple, Union
|
| 6 |
+
from ukraine.research.transformer.transformer import Transformer
|
| 7 |
+
from ukraine.research.transformer.layers import SiLUFeedForward
|
| 8 |
+
from ukraine.research.transformer.masking import generate_square_subsequent_mask
|
| 9 |
+
from src.configuration_lime import LIMEConfig
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def make_ff(config: LIMEConfig):
|
| 13 |
+
return SiLUFeedForward(
|
| 14 |
+
d_model=config.d_model,
|
| 15 |
+
dff=config.dff,
|
| 16 |
+
multiple_of=config.multiple_of
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def make_norm(config: LIMEConfig):
|
| 21 |
+
return nn.RMSNorm(config.d_model)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class LIMEForCausalLM(PreTrainedModel):
|
| 25 |
+
config_class = LIMEConfig
|
| 26 |
+
base_model_prefix = "lime"
|
| 27 |
+
_tied_weights_keys = ["transformer.output_fc.weight"]
|
| 28 |
+
|
| 29 |
+
def __init__(self, config: LIMEConfig):
|
| 30 |
+
super().__init__(config)
|
| 31 |
+
self.config = config
|
| 32 |
+
|
| 33 |
+
self.transformer = Transformer(
|
| 34 |
+
num_encoder_layers=config.num_encoder_layers,
|
| 35 |
+
num_decoder_layers=config.num_decoder_layers,
|
| 36 |
+
d_model=config.d_model,
|
| 37 |
+
num_heads=config.num_heads,
|
| 38 |
+
input_vocab_size=config.vocab_size,
|
| 39 |
+
target_vocab_size=config.vocab_size,
|
| 40 |
+
dropout_rate=config.dropout_rate,
|
| 41 |
+
ff_factory=lambda: make_ff(config),
|
| 42 |
+
norm_factory=lambda: make_norm(config),
|
| 43 |
+
pad_token_id=config.pad_token_id,
|
| 44 |
+
use_encoder=config.use_encoder,
|
| 45 |
+
use_flash=config.use_flash
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
self.post_init()
|
| 49 |
+
|
| 50 |
+
# For transformers library
|
| 51 |
+
def get_input_embeddings(self):
|
| 52 |
+
return self.transformer.decoder.embedding
|
| 53 |
+
|
| 54 |
+
def set_input_embeddings(self, value):
|
| 55 |
+
self.transformer.decoder.embedding = value
|
| 56 |
+
|
| 57 |
+
def get_output_embeddings(self):
|
| 58 |
+
return self.transformer.output_fc
|
| 59 |
+
|
| 60 |
+
def set_output_embeddings(self, new_embeddings):
|
| 61 |
+
self.transformer.output_fc = new_embeddings
|
| 62 |
+
|
| 63 |
+
def _tie_weights(self):
|
| 64 |
+
if self.config.tie_word_embeddings:
|
| 65 |
+
self._tie_or_clone_weights(
|
| 66 |
+
self.transformer.output_fc,
|
| 67 |
+
self.get_input_embeddings()
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
def forward(
|
| 71 |
+
self,
|
| 72 |
+
input_ids: torch.LongTensor,
|
| 73 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 74 |
+
labels: Optional[torch.LongTensor] = None,
|
| 75 |
+
return_dict: Optional[bool] = None,
|
| 76 |
+
**kwargs
|
| 77 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 78 |
+
|
| 79 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 80 |
+
|
| 81 |
+
batch_size, seq_len = input_ids.shape
|
| 82 |
+
device = input_ids.device
|
| 83 |
+
|
| 84 |
+
tgt_mask = generate_square_subsequent_mask(seq_len, device)
|
| 85 |
+
|
| 86 |
+
# If we are planning to train the model.
|
| 87 |
+
if labels is not None:
|
| 88 |
+
tgt_key_padding_mask = input_ids.eq(self.config.pad_token_id)
|
| 89 |
+
# For inference we do not need it.
|
| 90 |
+
else:
|
| 91 |
+
tgt_key_padding_mask = None
|
| 92 |
+
|
| 93 |
+
logits, _ = self.transformer(
|
| 94 |
+
src=input_ids,
|
| 95 |
+
tgt_mask=tgt_mask,
|
| 96 |
+
tgt_key_padding_mask=tgt_key_padding_mask
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
loss = None
|
| 100 |
+
if labels is not None:
|
| 101 |
+
shift_logits = logits[:, :-1, :].contiguous()
|
| 102 |
+
shift_labels = labels[:, 1:].contiguous()
|
| 103 |
+
# This ignore index was used during SFT training.
|
| 104 |
+
criterion = nn.CrossEntropyLoss(ignore_index=-100)
|
| 105 |
+
loss = criterion(
|
| 106 |
+
shift_logits.reshape(-1, self.config.vocab_size),
|
| 107 |
+
shift_labels.reshape(-1)
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
if not return_dict:
|
| 111 |
+
output = (logits,)
|
| 112 |
+
return ((loss,) + output) if loss is not None else output
|
| 113 |
+
|
| 114 |
+
return CausalLMOutputWithPast(
|
| 115 |
+
loss=loss,
|
| 116 |
+
logits=logits,
|
| 117 |
+
past_key_values=None,
|
| 118 |
+
hidden_states=None,
|
| 119 |
+
attentions=None
|
| 120 |
+
)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<user>",
|
| 4 |
+
"<assistant>"
|
| 5 |
+
],
|
| 6 |
+
"eos_token": {
|
| 7 |
+
"content": "<eos>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false
|
| 12 |
+
},
|
| 13 |
+
"pad_token": {
|
| 14 |
+
"content": "<pad>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false
|
| 19 |
+
}
|
| 20 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<pad>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<eos>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "<user>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<assistant>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
}
|
| 35 |
+
},
|
| 36 |
+
"additional_special_tokens": [
|
| 37 |
+
"<user>",
|
| 38 |
+
"<assistant>"
|
| 39 |
+
],
|
| 40 |
+
"clean_up_tokenization_spaces": false,
|
| 41 |
+
"eos_token": "<eos>",
|
| 42 |
+
"extra_special_tokens": {},
|
| 43 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 44 |
+
"pad_token": "<pad>",
|
| 45 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
| 46 |
+
}
|