Upload demo
Browse files- best_GRU_tuning_model.h5 +3 -0
- demo_launch.py +33 -0
- my_tokenizer.pkl +3 -0
best_GRU_tuning_model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:63df9e0a0aea525a8faf6bee64c37bdb677bd3857e551151fe649f8fe348b0f9
|
| 3 |
+
size 4500792
|
demo_launch.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
from tensorflow.keras.models import load_model
|
| 4 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 5 |
+
import pickle
|
| 6 |
+
import re
|
| 7 |
+
|
| 8 |
+
# Load model and tokenizer
|
| 9 |
+
model = load_model("best_GRU_tuning_model.h5")
|
| 10 |
+
with open("my_tokenizer.pkl","rb") as f:
|
| 11 |
+
tokenizer = pickle.load(f)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def preprocess_text(text):
|
| 15 |
+
text = text.lower()
|
| 16 |
+
text = re.sub(r'[^a-zA-Z\s]', '', text).strip()
|
| 17 |
+
return text
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def predict_sentiment(raw_text):
|
| 21 |
+
cleaned = preprocess_text(raw_text)
|
| 22 |
+
seq = tokenizer.texts_to_sequences([cleaned])
|
| 23 |
+
padded_seq = pad_sequences(seq, maxlen=200)
|
| 24 |
+
probs = model.predict(padded_seq)
|
| 25 |
+
predicted_class = np.argmax(probs, axis=1)[0]
|
| 26 |
+
rating = predicted_class + 1
|
| 27 |
+
return f"Predicted rating: {rating} (probabilities={probs[0]})"
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
demo = gr.Interface(fn=predict_sentiment,
|
| 31 |
+
inputs="text",
|
| 32 |
+
outputs="label")
|
| 33 |
+
demo.launch()
|
my_tokenizer.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0ec7e5e4490233566c1eba5de3e26696ce37b3bc12d5db5ea0b24dd949846d3e
|
| 3 |
+
size 2484227
|