--- library_name: transformers base_model: skt/kobert-base-v1 tags: - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: GS_bert results: [] --- # GS_bert This model is a fine-tuned version of [skt/kobert-base-v1](https://huggingface.co/skt/kobert-base-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1479 - F1: 0.2907 - Precision: 0.3056 - Recall: 0.2796 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:| | 0.1873 | 1.0 | 90 | 0.1755 | 0.0291 | 0.0315 | 0.0273 | | 0.1681 | 2.0 | 180 | 0.1618 | 0.0381 | 0.0407 | 0.0361 | | 0.1692 | 3.0 | 270 | 0.1617 | 0.0421 | 0.0444 | 0.0403 | | 0.1715 | 4.0 | 360 | 0.1616 | 0.0397 | 0.0426 | 0.0375 | | 0.1677 | 5.0 | 450 | 0.1615 | 0.0423 | 0.0444 | 0.0407 | | 0.1676 | 6.0 | 540 | 0.1615 | 0.0421 | 0.0444 | 0.0403 | | 0.1682 | 7.0 | 630 | 0.1616 | 0.0394 | 0.0426 | 0.0370 | | 0.1665 | 8.0 | 720 | 0.1613 | 0.0476 | 0.05 | 0.0458 | | 0.1658 | 9.0 | 810 | 0.1610 | 0.0616 | 0.0667 | 0.0579 | | 0.1674 | 10.0 | 900 | 0.1599 | 0.0987 | 0.1056 | 0.0935 | | 0.1613 | 11.0 | 990 | 0.1587 | 0.1206 | 0.1278 | 0.1153 | | 0.1608 | 12.0 | 1080 | 0.1568 | 0.1722 | 0.1796 | 0.1667 | | 0.1612 | 13.0 | 1170 | 0.1550 | 0.1910 | 0.2019 | 0.1829 | | 0.1581 | 14.0 | 1260 | 0.1532 | 0.2423 | 0.2537 | 0.2338 | | 0.1575 | 15.0 | 1350 | 0.1516 | 0.2862 | 0.3 | 0.2759 | | 0.1548 | 16.0 | 1440 | 0.1505 | 0.2878 | 0.3019 | 0.2773 | | 0.1517 | 17.0 | 1530 | 0.1493 | 0.2979 | 0.3130 | 0.2866 | | 0.1507 | 18.0 | 1620 | 0.1486 | 0.2907 | 0.3056 | 0.2796 | | 0.1519 | 19.0 | 1710 | 0.1481 | 0.2907 | 0.3056 | 0.2796 | | 0.1497 | 20.0 | 1800 | 0.1479 | 0.2907 | 0.3056 | 0.2796 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.4.1 - Tokenizers 0.21.0