--- library_name: peft license: mit base_model: klyang/MentaLLaMA-chat-7B-hf tags: - llama-factory - lora - generated_from_trainer model-index: - name: MentaLLaMA-chat-7B-PsyCourse-fold6 results: [] --- # MentaLLaMA-chat-7B-PsyCourse-fold6 This model is a fine-tuned version of [klyang/MentaLLaMA-chat-7B-hf](https://huggingface.co/klyang/MentaLLaMA-chat-7B-hf) on the course-train-fold6 dataset. It achieves the following results on the evaluation set: - Loss: 0.0319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8292 | 0.0751 | 50 | 0.6473 | | 0.1595 | 0.1502 | 100 | 0.1169 | | 0.0933 | 0.2254 | 150 | 0.0727 | | 0.0512 | 0.3005 | 200 | 0.0581 | | 0.0619 | 0.3756 | 250 | 0.0474 | | 0.0395 | 0.4507 | 300 | 0.0460 | | 0.0476 | 0.5258 | 350 | 0.0454 | | 0.0444 | 0.6009 | 400 | 0.0407 | | 0.0543 | 0.6761 | 450 | 0.0425 | | 0.0454 | 0.7512 | 500 | 0.0372 | | 0.0562 | 0.8263 | 550 | 0.0377 | | 0.0336 | 0.9014 | 600 | 0.0361 | | 0.0494 | 0.9765 | 650 | 0.0368 | | 0.0354 | 1.0516 | 700 | 0.0386 | | 0.029 | 1.1268 | 750 | 0.0376 | | 0.0301 | 1.2019 | 800 | 0.0352 | | 0.0321 | 1.2770 | 850 | 0.0341 | | 0.0271 | 1.3521 | 900 | 0.0343 | | 0.0351 | 1.4272 | 950 | 0.0330 | | 0.0244 | 1.5023 | 1000 | 0.0330 | | 0.0277 | 1.5775 | 1050 | 0.0341 | | 0.0231 | 1.6526 | 1100 | 0.0340 | | 0.0261 | 1.7277 | 1150 | 0.0327 | | 0.0297 | 1.8028 | 1200 | 0.0348 | | 0.027 | 1.8779 | 1250 | 0.0334 | | 0.0417 | 1.9531 | 1300 | 0.0348 | | 0.0173 | 2.0282 | 1350 | 0.0328 | | 0.0207 | 2.1033 | 1400 | 0.0323 | | 0.0223 | 2.1784 | 1450 | 0.0325 | | 0.0107 | 2.2535 | 1500 | 0.0359 | | 0.0182 | 2.3286 | 1550 | 0.0332 | | 0.0187 | 2.4038 | 1600 | 0.0323 | | 0.018 | 2.4789 | 1650 | 0.0327 | | 0.0205 | 2.5540 | 1700 | 0.0350 | | 0.0182 | 2.6291 | 1750 | 0.0323 | | 0.0202 | 2.7042 | 1800 | 0.0325 | | 0.0218 | 2.7793 | 1850 | 0.0323 | | 0.0179 | 2.8545 | 1900 | 0.0319 | | 0.0213 | 2.9296 | 1950 | 0.0330 | | 0.0104 | 3.0047 | 2000 | 0.0328 | | 0.0097 | 3.0798 | 2050 | 0.0359 | | 0.0103 | 3.1549 | 2100 | 0.0363 | | 0.0131 | 3.2300 | 2150 | 0.0359 | | 0.0149 | 3.3052 | 2200 | 0.0362 | | 0.0083 | 3.3803 | 2250 | 0.0365 | | 0.0115 | 3.4554 | 2300 | 0.0359 | | 0.0111 | 3.5305 | 2350 | 0.0387 | | 0.0094 | 3.6056 | 2400 | 0.0376 | | 0.0051 | 3.6808 | 2450 | 0.0376 | | 0.0053 | 3.7559 | 2500 | 0.0375 | | 0.0078 | 3.8310 | 2550 | 0.0377 | | 0.0105 | 3.9061 | 2600 | 0.0372 | | 0.0105 | 3.9812 | 2650 | 0.0371 | | 0.0064 | 4.0563 | 2700 | 0.0382 | | 0.0048 | 4.1315 | 2750 | 0.0398 | | 0.0065 | 4.2066 | 2800 | 0.0407 | | 0.0031 | 4.2817 | 2850 | 0.0417 | | 0.0028 | 4.3568 | 2900 | 0.0420 | | 0.0043 | 4.4319 | 2950 | 0.0421 | | 0.0048 | 4.5070 | 3000 | 0.0424 | | 0.0038 | 4.5822 | 3050 | 0.0428 | | 0.0041 | 4.6573 | 3100 | 0.0430 | | 0.0066 | 4.7324 | 3150 | 0.0431 | | 0.003 | 4.8075 | 3200 | 0.0430 | | 0.0031 | 4.8826 | 3250 | 0.0429 | | 0.0046 | 4.9577 | 3300 | 0.0430 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3