File size: 18,825 Bytes
584f841
b19f21d
 
 
584f841
 
 
 
 
 
 
 
 
 
484e3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
---
license: apache-2.0
library_name: geobot
pipeline_tag: other
tags:
  - geopolitics
  - forecasting
  - simulation
  - causal-inference
  - monte-carlo
  - time-series
  - python-library
  - framework
---
# GeoBotv1: Research-Grade Geopolitical Forecasting Framework

[![Status](https://img.shields.io/badge/status-production-brightgreen)]() [![Python](https://img.shields.io/badge/python-3.9+-blue)]() [![License](https://img.shields.io/badge/license-MIT-blue)]()

**GeoBotv1** is a complete, research-grade framework for geopolitical forecasting, conflict prediction, and causal policy analysis. Built on rigorous mathematical foundations, it combines optimal transport theory, structural causal inference, Bayesian reasoning, stochastic processes, econometric methods, and machine learning to provide actionable intelligence on regime shifts, conflict escalation, and intervention outcomes.

**Status: βœ… 100% Complete** - All core mathematical frameworks implemented and production-ready.

---

## 🎯 Key Capabilities

- **Causal Policy Analysis**: Simulate interventions (sanctions, deployments, regime changes) and estimate counterfactual outcomes
- **Conflict Contagion Modeling**: Model self-exciting escalation dynamics and cross-country spillovers using Hawkes processes
- **Multi-Country Forecasting**: Capture interdependencies and shock propagation with Vector Autoregression (VAR/SVAR)
- **Quasi-Experimental Inference**: Estimate treatment effects from observational data (Synthetic Control, DiD, RDD, IV)
- **Regime Detection**: Identify structural breaks and state transitions in real-time
- **Scenario Comparison**: Measure distances between geopolitical futures using optimal transport geometry
- **Intelligence Integration**: Bayesian belief updating from text, events, and structured data
- **Nowcasting**: High-dimensional factor models for real-time situational awareness

---

## πŸ“Š Complete Mathematical Framework

### βœ… Implemented Core Components

<table>
<tr>
<td width="50%">

**1. Optimal Transport Theory**
- Wasserstein distances (W1, W2, W∞)
- Kantorovich duality (primal/dual formulations)
- Sinkhorn algorithm (entropic regularization)
- Unbalanced optimal transport
- Gromov-Wasserstein for network comparison
- Gradient-based OT optimization

**2. Causal Inference**
- Directed Acyclic Graphs (DAGs)
- Structural Causal Models (SCMs)
- Pearl's Do-Calculus for interventions
- Backdoor/frontdoor adjustment
- Counterfactual computation
- Causal discovery algorithms

**3. Bayesian Inference**
- Markov Chain Monte Carlo (MCMC)
- Sequential Monte Carlo (Particle Filters)
  - Bootstrap, Auxiliary, Rao-Blackwellized
- Variational Inference (ELBO, CAVI, ADVI)
- Belief updating from intelligence
- Posterior predictive distributions

**4. Stochastic Processes**
- Stochastic Differential Equations (SDEs)
  - Euler-Maruyama, Milstein, Stochastic RK
- Jump-diffusion processes (Merton model)
- Ornstein-Uhlenbeck processes
- GeopoliticalSDE framework
- Continuous-time dynamics

</td>
<td width="50%">

**5. Time-Series & Econometrics**
- Kalman Filters (Linear & Extended)
- Hidden Markov Models (HMM)
- Regime-Switching Models
- **Vector Autoregression (VAR)**
- **Structural VAR (SVAR)**
- **Dynamic Factor Models (DFM)**
- **Granger Causality Testing**
- Impulse Response Functions (IRF)
- Forecast Error Variance Decomposition

**6. Point Processes**
- **Univariate Hawkes Processes**
- **Multivariate Hawkes Processes**
- **Conflict Contagion Models**
- Branching ratio estimation
- Self-excitation dynamics
- Cross-country excitation matrices

**7. Quasi-Experimental Methods**
- **Synthetic Control Method (SCM)**
- **Difference-in-Differences (DiD)**
- **Regression Discontinuity Design (RDD)**
- **Instrumental Variables (2SLS)**
- Placebo tests and robustness checks
- Treatment effect bounds

**8. Machine Learning**
- Graph Neural Networks (GNN, GAT)
- CausalGNN for directed graphs
- Risk scoring and classification
- Feature discovery and embeddings
- Transformer-based text encoding

</td>
</tr>
</table>

---

## πŸš€ Quick Start

### Installation

```bash
# Clone the repository
git clone https://github.com/your-org/AIGEOPOLITICAL.git
cd AIGEOPOLITICAL

# Install dependencies
pip install -r requirements.txt

# Optional: Install Graph Neural Network support
# (Requires matching torch version)
pip install torch-geometric torch-scatter torch-sparse
```

### Basic Usage Example

```python
from geobot.core import Scenario, ScenarioComparator
from geobot.models import CausalGraph
from geobot.inference import DoCalculus
from geobot.timeseries import VARModel
import numpy as np

# 1. Create geopolitical scenarios
scenario_baseline = Scenario(
    name="Baseline",
    features={
        "military_readiness": np.array([0.6, 0.4, 0.5]),
        "economic_stability": np.array([0.7, 0.6, 0.5])
    }
)

scenario_intervention = Scenario(
    name="Post-Sanctions",
    features={
        "military_readiness": np.array([0.8, 0.4, 0.5]),
        "economic_stability": np.array([0.3, 0.6, 0.5])
    }
)

# 2. Compare scenarios using optimal transport
comparator = ScenarioComparator()
distance = comparator.compare(scenario_baseline, scenario_intervention)
print(f"Wasserstein distance: {distance:.4f}")

# 3. Build causal model
causal_graph = CausalGraph()
causal_graph.add_edge("sanctions", "economy", strength=0.8)
causal_graph.add_edge("economy", "stability", strength=0.6)
causal_graph.add_edge("stability", "conflict_risk", strength=-0.7)

# 4. Simulate intervention
do_calc = DoCalculus(causal_graph)
intervention_effect = do_calc.compute_intervention_effect(
    intervention={"sanctions": 1.0},
    outcome="conflict_risk"
)
print(f"Estimated effect on conflict risk: {intervention_effect:.3f}")

# 5. Multi-country VAR forecasting
# (Simulated data for demonstration)
data = np.random.randn(100, 3)  # 100 time periods, 3 countries
var = VARModel(n_lags=2)
results = var.fit(data, variable_names=['Country_A', 'Country_B', 'Country_C'])
forecast = var.forecast(results, steps=10)
print(f"10-step forecast:\n{forecast}")
```

### Conflict Contagion Example

```python
from geobot.timeseries import ConflictContagionModel

# Model conflict spread between countries
countries = ['Syria', 'Iraq', 'Lebanon', 'Turkey']
model = ConflictContagionModel(countries=countries)

# Historical conflict events (times when conflicts occurred)
events = {
    'Syria': [1.2, 5.3, 10.1, 15.2, 22.3],
    'Iraq': [3.4, 8.9, 12.1, 18.5],
    'Lebanon': [12.3, 19.8, 25.1],
    'Turkey': [28.2, 30.5]
}

# Fit contagion model
result = model.fit(events, T=365.0)  # 1 year of data

print(f"Most contagious source: {result['most_contagious_source']}")
print(f"Most vulnerable target: {result['most_vulnerable_target']}")

# Assess future risk
risks = model.contagion_risk(events, result, t=370.0, horizon=30.0)
for country, risk in risks.items():
    print(f"{country} conflict risk (next 30 days): {risk:.1%}")
```

### Synthetic Control for Policy Evaluation

```python
from geobot.models import SyntheticControlMethod
import numpy as np

# Evaluate impact of sanctions on target country
scm = SyntheticControlMethod()

# Data: treated country vs. control countries
treated_outcome = gdp_growth_target_country  # Shape: (T,)
control_outcomes = gdp_growth_other_countries  # Shape: (T, J)

result = scm.fit(
    treated_outcome=treated_outcome,
    control_outcomes=control_outcomes,
    treatment_time=50,  # Sanctions imposed at t=50
    control_names=['Country_1', 'Country_2', ..., 'Country_J']
)

# Estimated treatment effect
avg_effect = np.mean(result.treatment_effect[50:])
print(f"Average treatment effect: {avg_effect:.3f}")

# Statistical significance via placebo test
p_value = scm.placebo_test(treated_outcome, control_outcomes,
                           treatment_time=50, n_permutations=100)
print(f"Placebo test p-value: {p_value:.3f}")
```

---

## πŸ“ Project Structure

```
AIGEOPOLITICAL/
β”œβ”€β”€ geobot/                          # Main package
β”‚   β”œβ”€β”€ core/                        # Core mathematical primitives
β”‚   β”‚   β”œβ”€β”€ optimal_transport.py     # Wasserstein distances
β”‚   β”‚   β”œβ”€β”€ advanced_optimal_transport.py  # Kantorovich, Sinkhorn, Gromov-W
β”‚   β”‚   └── scenario.py              # Scenario representations
β”‚   β”‚
β”‚   β”œβ”€β”€ models/                      # Causal models
β”‚   β”‚   β”œβ”€β”€ causal_graph.py          # DAGs and SCMs
β”‚   β”‚   β”œβ”€β”€ causal_discovery.py      # Causal structure learning
β”‚   β”‚   └── quasi_experimental.py    # SCM, DiD, RDD, IV methods
β”‚   β”‚
β”‚   β”œβ”€β”€ inference/                   # Probabilistic inference
β”‚   β”‚   β”œβ”€β”€ do_calculus.py           # Interventions and counterfactuals
β”‚   β”‚   β”œβ”€β”€ bayesian_engine.py       # Bayesian belief updating
β”‚   β”‚   β”œβ”€β”€ particle_filter.py       # Sequential Monte Carlo
β”‚   β”‚   └── variational_inference.py # VI, ELBO, ADVI
β”‚   β”‚
β”‚   β”œβ”€β”€ simulation/                  # Stochastic simulation
β”‚   β”‚   β”œβ”€β”€ monte_carlo.py           # Basic Monte Carlo
β”‚   β”‚   β”œβ”€β”€ sde_solver.py            # Stochastic differential equations
β”‚   β”‚   └── agent_based.py           # Agent-based models
β”‚   β”‚
β”‚   β”œβ”€β”€ timeseries/                  # Time-series models
β”‚   β”‚   β”œβ”€β”€ kalman_filter.py         # Kalman filters
β”‚   β”‚   β”œβ”€β”€ hmm.py                   # Hidden Markov Models
β”‚   β”‚   β”œβ”€β”€ regime_switching.py      # Regime-switching models
β”‚   β”‚   β”œβ”€β”€ var_models.py            # VAR, SVAR, DFM, Granger causality
β”‚   β”‚   └── point_processes.py       # Hawkes processes, conflict contagion
β”‚   β”‚
β”‚   β”œβ”€β”€ ml/                          # Machine learning
β”‚   β”‚   β”œβ”€β”€ risk_models.py           # Risk scoring
β”‚   β”‚   β”œβ”€β”€ graph_neural_networks.py # GNNs for causal/geopolitical networks
β”‚   β”‚   └── embeddings.py            # Feature embeddings
β”‚   β”‚
β”‚   β”œβ”€β”€ data_ingestion/              # Data processing
β”‚   β”‚   β”œβ”€β”€ pdf_reader.py            # PDF intelligence extraction
β”‚   β”‚   β”œβ”€β”€ web_scraper.py           # Web scraping
β”‚   β”‚   β”œβ”€β”€ event_extraction.py      # NLP-based event structuring
β”‚   β”‚   └── event_database.py        # Event storage and querying
β”‚   β”‚
β”‚   β”œβ”€β”€ utils/                       # Utilities
β”‚   β”‚   β”œβ”€β”€ data_processing.py       # Data preprocessing
β”‚   β”‚   └── visualization.py         # Plotting and visualization
β”‚   β”‚
β”‚   └── config/                      # Configuration
β”‚       └── settings.py              # System configuration
β”‚
β”œβ”€β”€ examples/                        # Comprehensive examples
β”‚   β”œβ”€β”€ 01_basic_usage.py            # Scenarios, causal graphs, Monte Carlo
β”‚   β”œβ”€β”€ 02_data_ingestion.py        # PDF/web scraping pipeline
β”‚   β”œβ”€β”€ 03_intervention_simulation.py # Do-calculus and counterfactuals
β”‚   β”œβ”€β”€ 04_advanced_features.py     # Particle filters, VI, SDEs, GNNs
β”‚   └── 05_complete_framework.py    # VAR, Hawkes, quasi-experimental
β”‚
β”œβ”€β”€ requirements.txt                 # Python dependencies
└── README.md                        # This file
```

---

## πŸ”¬ Mathematical Foundations

### Causality-First Principle

GeoBotv1 grounds all forecasting in **explicit causal structure**. This prevents spurious correlations and enables simulation of interventions that have never been observed.

**Structural Causal Model (SCM):**
```
X := f_X(Pa_X, U_X)
Y := f_Y(Pa_Y, U_Y)
```

**Pearl's Do-Calculus** enables reasoning about interventions `do(X = x)` even when only observational data is available.

### Optimal Transport for Scenario Comparison

The Wasserstein distance measures the "cost" of transforming one probability distribution into another:

```
W_2(ΞΌ, Ξ½) = inf_{Ο€ ∈ Ξ (ΞΌ,Ξ½)} √(∫∫ ||x - y||Β² dΟ€(x,y))
```

**Kantorovich Duality** provides computational efficiency and geometric interpretation.

### Hawkes Processes for Conflict Dynamics

Self-exciting point processes capture escalation and contagion:

```
Ξ»_k(t) = ΞΌ_k + βˆ‘_{j=1}^K Ξ±_{kj} βˆ‘_{t_i^j < t} exp(-Ξ²_{kj}(t - t_i^j))
```

**Branching ratio** `n = Ξ±/Ξ²` determines stability:
- `n < 1`: Process is stable (subcritical)
- `n β‰₯ 1`: Process is explosive (supercritical)

### Stochastic Differential Equations

Continuous-time geopolitical dynamics:

```
dX_t = ΞΌ(X_t, t) dt + Οƒ(X_t, t) dW_t + dJ_t
```

Where:
- `ΞΌ`: Drift (deterministic component)
- `Οƒ dW_t`: Diffusion (continuous shocks)
- `dJ_t`: Jumps (discrete events)

---

## πŸ’‘ Use Cases

### 1. Strategic Intelligence & Risk Assessment
- **Multi-country risk dashboards** with VAR-based interdependency analysis
- **Real-time belief updating** as intelligence arrives (Bayesian inference)
- **Regime detection** using HMM and particle filters

### 2. Conflict Prediction & Early Warning
- **Hawkes process models** for escalation dynamics and contagion
- **Structural break detection** in military/economic indicators
- **Cross-country spillover analysis** with SVAR impulse responses

### 3. Policy Impact Analysis
- **Synthetic control** for sanctions/intervention evaluation
- **Difference-in-differences** for regime change effects
- **Regression discontinuity** for election outcome impacts
- **Do-calculus** for counterfactual policy simulation

### 4. Resource Allocation & Logistics
- **Optimal transport** for supply chain optimization under uncertainty
- **Monte Carlo simulation** for contingency planning
- **Stochastic optimization** with SDE-based constraints

### 5. Diplomatic Forecasting
- **Game-theoretic extensions** (can be added via causal graphs)
- **Network centrality** analysis with GNNs
- **Alliance dynamics** using multivariate Hawkes processes

---

## πŸ› οΈ Technical Requirements

### Core Dependencies
- **Python**: 3.9+
- **NumPy**: 1.24+
- **SciPy**: 1.10+
- **Pandas**: 2.0+
- **NetworkX**: 3.0+ (causal graphs)
- **POT**: 0.9+ (optimal transport)
- **PyMC**: 5.0+ (Bayesian inference)
- **Statsmodels**: 0.14+ (econometrics)

### Optional but Recommended
- **PyTorch**: 2.0+ (for GNNs, deep learning)
- **PyTorch Geometric**: 2.3+ (graph neural networks)
- **spaCy**: 3.6+ (NLP for event extraction)
- **Transformers**: 4.30+ (text embeddings)

### Data Ingestion
- **Beautiful Soup**: 4.12+ (web scraping)
- **PDFPlumber**: 0.10+ (PDF extraction)
- **Newspaper3k**: 0.2.8+ (article extraction)
- **Feedparser**: 6.0+ (RSS feeds)

See `requirements.txt` for complete dependency list.

---

## πŸ“– Documentation & Examples

### Example Scripts
All examples are fully functional and demonstrate end-to-end workflows:

1. **`01_basic_usage.py`**: Scenarios, causal graphs, Monte Carlo basics, Bayesian updating
2. **`02_data_ingestion.py`**: PDF extraction, web scraping, event databases
3. **`03_intervention_simulation.py`**: Do-calculus, counterfactuals, policy simulation
4. **`04_advanced_features.py`**: Particle filters, VI, SDEs, GNNs, event extraction
5. **`05_complete_framework.py`**: VAR/SVAR/DFM, Hawkes processes, quasi-experimental methods

### Running Examples

```bash
cd examples

# Basic usage
python 01_basic_usage.py

# Data ingestion pipeline
python 02_data_ingestion.py

# Intervention simulation
python 03_intervention_simulation.py

# Advanced mathematical features
python 04_advanced_features.py

# Complete framework demonstration (VAR, Hawkes, quasi-experimental)
python 05_complete_framework.py
```

---

## πŸŽ“ Theoretical Background

GeoBotv1 synthesizes methods from multiple fields:

### Economics & Econometrics
- Vector Autoregression (Sims, 1980)
- Structural VAR identification (Blanchard & Quah, 1989)
- Synthetic Control Method (Abadie et al., 2010, 2015)
- Difference-in-Differences (Card & Krueger, 1994)
- Regression Discontinuity (Thistlethwaite & Campbell, 1960)

### Statistics & Probability
- Optimal Transport (Villani, 2003, 2009)
- Hawkes Processes (Hawkes, 1971; Hawkes & Oakes, 1974)
- Sequential Monte Carlo (Doucet et al., 2001)
- Variational Inference (Jordan et al., 1999; Blei et al., 2017)

### Computer Science & AI
- Causal Inference (Pearl, 2000, 2009)
- Do-Calculus (Pearl, 1995)
- Graph Neural Networks (Kipf & Welling, 2017; VeličkoviΔ‡ et al., 2018)
- Structural Causal Models (Pearl & Mackenzie, 2018)

### Geopolitics & Conflict Studies
- Conflict contagion (Gleditsch, 2007; Braithwaite, 2010)
- Regime change dynamics (Acemoglu & Robinson, 2006)
- Economic sanctions effects (Hufbauer et al., 2007)

---

## πŸ§ͺ Testing & Validation

### Mathematical Correctness
- Kantorovich duality: Verify primal-dual gap β‰ˆ 0
- Hawkes stability: Check branching ratio < 1 for subcritical processes
- Causal identification: Validate backdoor/frontdoor criteria
- Particle filter: Monitor Effective Sample Size (ESS)

### Statistical Properties
- VAR stationarity: Check eigenvalues of companion matrix
- SVAR identification: Verify order conditions satisfied
- Synthetic control: Pre-treatment fit quality (RMSPE)
- RDD: Bandwidth sensitivity analysis

### Reproducibility
All examples include `np.random.seed()` for deterministic results.

---

## 🚧 Extensions & Future Work

While GeoBotv1 is complete for core forecasting tasks, potential extensions include:

- **Game-Theoretic Modules**: Strategic interaction between actors
- **Spatial Statistics**: Geographic contagion with distance decay
- **Network Effects**: Centrality measures, community detection
- **Deep Learning**: Attention mechanisms for text-to-risk pipelines
- **Real-Time Data Feeds**: API integrations for live intelligence
- **Uncertainty Quantification**: Conformal prediction, calibration
- **Ensemble Methods**: Model averaging across multiple frameworks

---

## πŸ“„ License

MIT License - See LICENSE file for details

---

## πŸ™ Acknowledgments

GeoBotv1 builds on decades of research in:
- Causal inference (Judea Pearl, Donald Rubin)
- Optimal transport theory (CΓ©dric Villani, Leonid Kantorovich)
- Econometrics (Christopher Sims, Alberto Abadie)
- Point processes (Alan Hawkes, Daryl Daley)
- Bayesian statistics (Andrew Gelman, Michael Jordan)
- Stochastic calculus (Kiyosi Itô, Bernt Øksendal)

---

## πŸ“§ Contact & Support

For questions, issues, or collaboration:
- **Issues**: [GitHub Issues](https://github.com/your-org/AIGEOPOLITICAL/issues)
- **Documentation**: [Full documentation](https://your-org.github.io/AIGEOPOLITICAL)
- **Citation**: If you use GeoBotv1 in research, please cite this repository

---

<div align="center">

**GeoBotv1** - Where rigorous mathematics meets geopolitical forecasting

*Built with causality, powered by probability, validated by theory*

</div>