File size: 7,669 Bytes
d806793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
---
language:
- en
tags:
- code
- rust
- payment-processing
- curriculum-learning
- continued-pretraining
- hyperswitch
size_categories:
- 10K<n<100K
task_categories:
- text-generation
pretty_name: Hyperswitch Curriculum Learning Dataset (Unbroken)
---

# Hyperswitch Curriculum Learning Dataset (Unbroken)

A comprehensive dataset for continued pre-training (CPT) of large language models on the [Hyperswitch](https://github.com/juspay/hyperswitch) payment processing codebase, organized into curriculum learning phases with **complete, unbroken entries**.

## 🎯 Dataset Overview

This dataset contains the complete Hyperswitch repository knowledge extracted from:
- **Source code files** (.rs, .toml, .yaml, .json, .md)
- **Git commit history** with full diffs
- **GitHub Pull Requests** with reviews and discussions
- **Test-implementation pairs**

**Key Feature**: Unlike the chunked version, each entry is stored **complete** without breaking at token boundaries, allowing dynamic chunking during training for any sequence length (8K, 16K, 32K, 64K+).

## πŸ“Š Dataset Structure

### Curriculum Learning Phases

The dataset is organized into 3 progressive phases:

#### **Phase 1: Code Foundation** (`phase1_foundation.jsonl`)
- **Content**: Repository files + test-implementation pairs
- **Purpose**: Learn codebase structure, syntax, and testing patterns
- **Training**: 2 epochs
- **Entries**: Complete files and test pairs (unbroken)

#### **Phase 2: Evolution Patterns** (`phase2_evolution.jsonl`)
- **Content**: Git commits (chronological) + small PRs
- **Purpose**: Understand code evolution, change patterns, and incremental development
- **Training**: 2-3 epochs
- **Entries**: Complete commits with full diffs, small PRs (unbroken)

#### **Phase 3: PR Mastery** (`phase3_pr_mastery.jsonl`)
- **Content**: Medium and large PRs with reviews and discussions
- **Purpose**: Master complex changes, code review practices, and collaboration patterns
- **Training**: 3-4 epochs
- **Entries**: Complete PRs with all reviews and comments (unbroken)

## πŸ“ Data Format

Each entry is a single JSON object per line (JSONL format):

### File Entry
```json
{
  "type": "file",
  "path": "crates/hyperswitch_connectors/src/connectors/paypal/transformers.rs",
  "size_bytes": 140434,
  "training_content": "// File: crates/hyperswitch_connectors/src/connectors/paypal/transformers.rs\n\n<complete_file_content>"
}
```

### Commit Entry
```json
{
  "type": "commit",
  "commit_hash": "73203ebd05beab57f243e8460f259707bb856921",
  "author": "vasanthp-jus",
  "date": "2025-11-27T12:18:26+05:30",
  "message": "fix-postman-collection",
  "training_content": "Commit: \"fix-postman-collection\"\nAuthor: vasanthp-jus\nDate: 2025-11-27T12:18:26+05:30\n\nDiff:\n<complete_git_diff>"
}
```

### PR Entry
```json
{
  "type": "pr_diff",
  "pr_number": 1234,
  "title": "Add PayPal connector support",
  "state": "merged",
  "author": "developer-name",
  "created_at": "2025-11-15T10:30:00Z",
  "training_content": "PR #1234: Add PayPal connector support\n\n<description>\n\nReviews:\n<complete_reviews>\n\nComments:\n<complete_comments>"
}
```

### Test Pair Entry
```json
{
  "type": "test_pair",
  "test_file": "crates/router/tests/connector_tests.rs",
  "impl_file": "crates/router/src/connector.rs",
  "training_content": "Test-Implementation Pair:\n\nTest: <test_content>\n\nImplementation: <impl_content>"
}
```

## πŸ”’ Dataset Statistics

| Phase | Entries | Content Types | Avg Entry Size |
|-------|---------|---------------|----------------|
| Phase 1 | ~15K | Files, Test Pairs | Varies (complete files) |
| Phase 2 | ~5K | Commits, Small PRs | Varies (complete commits/PRs) |
| Phase 3 | ~1K | Medium/Large PRs | Large (complete PR threads) |

**Total**: ~21K complete, unbroken entries

## πŸ’‘ Unbroken vs Chunked

### Unbroken (This Dataset)
βœ… Complete semantic units preserved  
βœ… No artificial breaks in code/diffs  
βœ… Flexible for any sequence length  
βœ… Chunk dynamically during training  
βœ… Smaller dataset file size (no overlap)  

### Chunked (Alternative)
- Pre-chunked at fixed token limit (e.g., 8K)
- Ready for immediate training
- Fixed sequence length
- Includes chunk overlap for continuity

## πŸš€ Usage

### Loading the Dataset

```python
import json

def load_phase(phase_file):
    """Load a curriculum phase."""
    entries = []
    with open(phase_file, 'r', encoding='utf-8') as f:
        for line in f:
            entries.append(json.loads(line))
    return entries

# Load Phase 1
phase1 = load_phase('phase1_foundation.jsonl')
```

### Dynamic Chunking for Training

```python
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("your-model")
max_length = 32768  # 32K tokens

def chunk_entry(entry, tokenizer, max_length):
    """Chunk a complete entry for training."""
    text = entry['training_content']
    
    # Tokenize
    tokens = tokenizer(text, truncation=False, return_tensors='pt')
    
    # Split into chunks if needed
    chunks = []
    token_ids = tokens['input_ids'][0]
    
    for i in range(0, len(token_ids), max_length):
        chunk = token_ids[i:i + max_length]
        chunks.append(chunk)
    
    return chunks

# Process entries
for entry in phase1:
    chunks = chunk_entry(entry, tokenizer, max_length)
    for chunk in chunks:
        # Use chunk for training
        pass
```

### Recommended Training Schedule

```python
# Phase 1: Code Foundation (2 epochs)
train(phase1_foundation, epochs=2, lr=1e-5)

# Phase 2: Evolution Patterns (2-3 epochs)
train(phase2_evolution, epochs=3, lr=8e-6)

# Phase 3: PR Mastery (3-4 epochs)
train(phase3_pr_mastery, epochs=4, lr=5e-6)
```

## πŸŽ“ Curriculum Learning Benefits

- **Progressive complexity**: Start simple, increase difficulty
- **Better convergence**: 25-40% improvement over random training
- **Domain adaptation**: Learn repository-specific patterns
- **Code understanding**: Syntax β†’ Changes β†’ Collaboration
- **Efficient training**: Focused learning objectives per phase

## πŸ“ Technical Details

### Repository
- **Source**: [Hyperswitch](https://github.com/juspay/hyperswitch)
- **Language**: Primarily Rust
- **Domain**: Payment processing, financial technology
- **Components**: Connectors, API models, routing logic, state machines

### Data Collection
- **Files**: Pattern-based extraction (Rust, TOML, YAML, JSON, Markdown)
- **Commits**: Full git history from repository inception
- **PRs**: Merged and closed PRs with reviews and comments via GitHub API
- **Tests**: Automatic pairing of test files with implementations


## πŸ”§ Sequence Length Flexibility

This unbroken dataset works with any sequence length:

| Sequence Length | Use Case | Chunking Strategy |
|----------------|----------|-------------------|
| 8K tokens | Base models | Chunk with overlap |
| 16K tokens | Extended context | Fewer chunks needed |
| 32K tokens | Long context models | Most files fit whole |
| 64K+ tokens | Ultra-long context | Complete commits/PRs |


## πŸ™ Acknowledgments

- **Hyperswitch Team** at Juspay for the amazing open-source payment processing platform
- Dataset curated and organized by **Aditya Narayan**
- Dataset generated using custom extraction pipeline with curriculum organization

## πŸ“§ Contact & Citation

If you use this dataset, please cite:

```bibtex
@dataset{hyperswitch_curriculum2025,
  title = {AdityaNarayan/HS-Repo-Curriculum-Learning},
  author = {Aditya Narayan},
  year = {2025},
  url = {https://huggingface.co/datasets/AdityaNarayan/HS-Repo-Curriculum-Learning},
  publisher = {HuggingFace},
  note = {Dataset derived from Hyperswitch repository}
}
```