Sandeep K commited on
Commit
ae3ddc0
·
verified ·
1 Parent(s): 725b01a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +445 -0
README.md ADDED
@@ -0,0 +1,445 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - hi
5
+ license: apache-2.0
6
+ size_categories:
7
+ - 10K<n<100K
8
+ task_categories:
9
+ - text-classification
10
+ - table-question-answering
11
+ - text-generation
12
+ tags:
13
+ - finance
14
+ - synthetic
15
+ - banking
16
+ - india
17
+ - transactions
18
+ - bank-statements
19
+ - document-ai
20
+ pretty_name: Indian Bank Statement Synthetic Dataset
21
+ ---
22
+
23
+ # Dataset Card for Indian Bank Statement Synthetic Dataset
24
+
25
+ This dataset contains synthetically generated Indian bank statements with realistic transaction patterns, merchant names, regional variations, and proper banking workflows representative of the Indian financial ecosystem. Available in both **scanned PDF** and **digital (structured JSON)** formats.
26
+
27
+ ## Dataset Details
28
+
29
+ ### Dataset Description
30
+
31
+ This is a comprehensive synthetic dataset of Indian bank transactions designed to reflect realistic banking behaviors across multiple Indian banks, payment systems (UPI, NEFT, IMPS, RTGS), and transaction types. The dataset incorporates regional naming patterns, realistic transaction flows, running balance calculations, and India-specific banking features such as UPI reference numbers, IFSC codes, MICR codes, and merchant identifiers commonly seen in Indian bank statements.
32
+
33
+ The dataset includes both **Current Accounts** (business banking) and **Savings Accounts** (individual banking) with transactions in two statement formats:
34
+ - **Separate Debit/Credit Columns**: Traditional format with distinct debit and credit columns
35
+ - **Single Transaction Column**: Combined format where debits and credits appear in one column with +/- indicators
36
+
37
+ Each statement is provided in:
38
+ - **Scanned PDF format**: Visual representation mimicking actual bank statement PDFs (suitable for OCR and document understanding tasks)
39
+ - **Digital JSON format**: Structured data with rich metadata including account details, branch information, and transaction records
40
+
41
+ **Note:** This dataset contains only legitimate transactions. It does NOT include fraudulent transactions or fraud patterns.
42
+
43
+ - **Curated by:** AgamiAI Inc.
44
+ - **Funded by:** AgamiAI Inc.
45
+ - **Language(s):** English (primary), Hindi (romanized merchant/location names)
46
+ - **License:** Apache 2.0
47
+
48
+ ### Dataset Sources
49
+
50
+ - **Repository:** https://huggingface.co/datasets/agami-ai/indian-bank-statements
51
+ - **Company Website:** https://www.agami.ai
52
+
53
+ ## Uses
54
+
55
+ ### Direct Use
56
+
57
+ This dataset is suitable for:
58
+ - **Document AI and OCR training**: Extract text and tables from scanned bank statement PDFs
59
+ - **Information Extraction**: Train models to identify and extract key fields (account numbers, balances, transaction details)
60
+ - **Transaction categorization and classification**: Classify transactions by type, merchant category, or purpose
61
+ - **Financial document understanding**: Build systems that comprehend bank statement structure and semantics
62
+ - **Chatbot and copilot training**: Train financial assistants to answer questions about bank statements
63
+ - **Data processing pipeline testing**: Validate ETL systems for banking data
64
+ - **Table extraction and parsing**: Train models to extract tabular transaction data from PDFs
65
+ - **Named Entity Recognition (NER)**: Identify merchant names, locations, and banking entities
66
+ - **Educational purposes**: Fintech and data science coursework
67
+ - **Agentic AI development**: Train private AI agents for financial document processing workflows
68
+
69
+ ### Out-of-Scope Use
70
+
71
+ This dataset should NOT be used for:
72
+ - **Fraud detection or anti-money laundering (AML)**: Dataset does not contain fraudulent patterns
73
+ - **Production compliance or regulatory reporting**: This is not real financial data
74
+ - **Training models for actual credit decisions**: Lacks real creditworthiness signals
75
+ - **Assuming complete representation** of all Indian demographics, regions, or banking behaviors
76
+ - **Real-world anomaly detection**: Synthetic anomalies may not match real-world patterns
77
+
78
+ ## Dataset Structure
79
+
80
+ ### Statement Formats
81
+
82
+ The dataset includes two transaction column formats:
83
+
84
+ **Format 1: Separate Debit/Credit Columns (Traditional)**
85
+ | Date | Description | Debit | Credit | Balance |
86
+ |------|-------------|-------|--------|---------|
87
+ | 01/01/2024 | UPI-Swiggy | 450.00 | - | 25,780.50 |
88
+ | 02/01/2024 | NEFT Salary Credit | - | 50,000.00 | 75,780.50 |
89
+
90
+ **Format 2: Single Transaction Column (Combined)**
91
+ | Date | Description | Transaction | Balance |
92
+ |------|-------------|-------------|---------|
93
+ | 01/01/2024 | UPI-Swiggy | -450.00 | 25,780.50 |
94
+ | 02/01/2024 | NEFT Salary Credit | +50,000.00 | 75,780.50 |
95
+
96
+ ### JSON Data Structure
97
+
98
+ Each statement includes a comprehensive JSON file with the following structure:
99
+
100
+ ```json
101
+ {
102
+ "bank_name": "Paramount Banking Corporation",
103
+ "account_holder": "CYIENT TECHNOLOGIES",
104
+ "account_holder_address": "F-346\nThird Floor\nHinjewadi\nPune\nMaharashtra\n520018",
105
+ "account_number": "90823789756",
106
+ "ifsc_code": "PARA0761987",
107
+ "micr_code": "899946557",
108
+ "branch_name": "PUNE HINJEWADI",
109
+ "branch_code": "6738",
110
+ "branch_phone": "8647919953",
111
+ "account_type": "CURRENT ACCOUNT- GENERAL",
112
+ "currency": "INR",
113
+ "customer_id": "134743833",
114
+ "opening_balance": 158458.03,
115
+ "closing_balance": 64424.49,
116
+ "start_date": "2024-01-01",
117
+ "end_date": "2024-03-31",
118
+ "statement_date": "2025-11-20",
119
+ "interest_rate": 2.83,
120
+ "transactions": [...]
121
+ }
122
+ ```
123
+
124
+ ### Transaction Record Structure
125
+
126
+ Each transaction in the `transactions` array contains:
127
+
128
+ ```json
129
+ {
130
+ "date": "2024-01-01 12:40:40",
131
+ "value_date": "2024-01-01",
132
+ "description": "NEFT Dr-471179370408-HDFC0009038-RIDDHI RAVAL",
133
+ "cheque_no": "862512",
134
+ "debit": 13932.79,
135
+ "credit": null,
136
+ "balance": 144525.24,
137
+ "branch_code": "3421",
138
+ "failed": false
139
+ }
140
+ ```
141
+
142
+ ### Data Fields
143
+
144
+ **Statement-Level Metadata:**
145
+
146
+ | Field | Type | Description |
147
+ |-------|------|-------------|
148
+ | `bank_name` | string | Name of the bank issuing the statement |
149
+ | `account_holder` | string | Name of account holder (individual or business) |
150
+ | `account_holder_address` | string | Complete address with line breaks |
151
+ | `account_number` | string | Bank account number |
152
+ | `ifsc_code` | string | Indian Financial System Code (11 characters) |
153
+ | `micr_code` | string | Magnetic Ink Character Recognition code |
154
+ | `branch_name` | string | Name and location of branch |
155
+ | `branch_code` | string | Branch identifier code |
156
+ | `branch_phone` | string | Branch contact phone number |
157
+ | `account_type` | string | Account type (Savings/Current, with sub-type) |
158
+ | `currency` | string | Currency (INR for all records) |
159
+ | `customer_id` | string | Bank's internal customer identifier |
160
+ | `opening_balance` | float | Account balance at statement start |
161
+ | `closing_balance` | float | Account balance at statement end |
162
+ | `start_date` | string | Statement period start date (YYYY-MM-DD) |
163
+ | `end_date` | string | Statement period end date (YYYY-MM-DD) |
164
+ | `statement_date` | string | Date statement was generated |
165
+ | `interest_rate` | float | Current interest rate (% per annum) |
166
+
167
+ **Transaction-Level Fields:**
168
+
169
+ | Field | Type | Description |
170
+ |-------|------|-------------|
171
+ | `date` | string | Transaction date and time (YYYY-MM-DD HH:MM:SS) |
172
+ | `value_date` | string | Value date (when funds cleared) |
173
+ | `description` | string | Full transaction description with bank codes and merchant info |
174
+ | `cheque_no` | string | Cheque number (empty string if not applicable) |
175
+ | `debit` | float | Debit amount in INR (null if credit transaction) |
176
+ | `credit` | float | Credit amount in INR (null if debit transaction) |
177
+ | `balance` | float | Running account balance after transaction |
178
+ | `branch_code` | string | Branch code where transaction occurred |
179
+ | `failed` | boolean | Transaction failure status (false for successful, true for failed/reversed) |
180
+
181
+ ### Transaction Types Included
182
+
183
+ - **UPI (Unified Payments Interface)**: UPI/DR, UPI/CR with reference numbers
184
+ - **NEFT (National Electronic Funds Transfer)**: NEFT Dr, NEFT Cr with bank codes
185
+ - **RTGS (Real Time Gross Settlement)**: RTGS Dr, RTGS Cr for high-value transfers
186
+ - **IMPS (Immediate Payment Service)**: IMPS Dr, IMPS Cr, IMPS Salary Transfers
187
+ - **Cheque Transactions**: Chq Paid, By Clg (Clearing)
188
+ - **Cash Transactions**: Cash Withdrawal, Cash Deposit (CASH-BNA-SELF)
189
+ - **ATM Transactions**: ATM WDL (Withdrawal)
190
+ - **Service Charges**: Various bank fees (online banking, statement charges, forex markup)
191
+ - **Reversals**: Failed transaction reversals with REVERSAL prefix
192
+
193
+ ### Account Types
194
+
195
+ - **Savings Accounts**: Individual banking with lower transaction volumes
196
+ - **Current Accounts**: Business banking with higher transaction volumes and no transaction limits
197
+
198
+ ### Data Splits
199
+
200
+ The dataset is organized into train, validation, and test splits to support machine learning workflows. Specific split sizes are available in the dataset repository.
201
+
202
+ ## Dataset Creation
203
+
204
+ ### Curation Rationale
205
+
206
+ India has one of the world's fastest-growing digital payment ecosystems, with UPI processing billions of transactions monthly. However, publicly available datasets for training AI models on Indian financial documents are scarce due to privacy and regulatory constraints.
207
+
208
+ AgamiAI created this synthetic dataset to support the development of privacy-preserving, accurate AI solutions for financial services. As a company specializing in private AI agents for enterprise clients, particularly in financial services, AgamiAI recognized the critical need for high-quality training data that:
209
+
210
+ 1. Enables development and testing of document AI systems for Indian bank statements
211
+ 2. Supports OCR and information extraction model training on scanned financial documents
212
+ 3. Provides realistic training data reflecting India-specific payment systems and banking formats
213
+ 4. Allows developers to build and test banking applications without accessing real customer data
214
+ 5. Includes both scanned (unstructured) and digital (structured) formats for comprehensive document understanding tasks
215
+ 6. Supports research in transaction classification, document parsing, and financial NLP
216
+ 7. Facilitates the development of agentic AI workflows for financial document processing
217
+
218
+ ### Source Data
219
+
220
+ #### Data Collection and Processing
221
+
222
+ This is a **fully synthetic dataset** with no real customer information. The generation process leverages AgamiAI's expertise in building enterprise-grade AI solutions and includes:
223
+
224
+ **Statement Generation:**
225
+ - Two format types: separate debit/credit columns and single combined transaction column
226
+ - Both scanned PDF (for OCR tasks) and structured JSON (for direct data processing)
227
+ - Realistic bank statement templates matching actual Indian bank formats
228
+ - Proper letterheads, logos, and formatting (synthetic bank brands)
229
+
230
+ **Transaction Generation:**
231
+ - Probabilistic modeling of realistic transaction patterns (frequency, amounts, timing)
232
+ - Proper debit/credit flows with accurate running balance calculations
233
+ - Transaction type distribution matching Indian banking patterns (high UPI usage, business-focused NEFT/RTGS)
234
+ - Salary credits, vendor payments, cash management at realistic intervals
235
+ - Transaction reversals and failed transactions for realistic edge cases
236
+
237
+ **Indian Banking Features:**
238
+ - UPI reference numbers following standard 12-digit formats
239
+ - NEFT/RTGS reference numbers with bank codes (HDFC, ICICI, Citi, etc.)
240
+ - Realistic business and individual names across Indian regions
241
+ - IFSC codes following standard format (BANK0123456)
242
+ - MICR codes (9 digits)
243
+ - Branch codes and locations
244
+ - Service charges and bank fees
245
+
246
+ **Account Variations:**
247
+ - Current Accounts: Business entities (companies, partnerships)
248
+ - Savings Accounts: Individual account holders
249
+ - Various transaction volumes (low to high frequency)
250
+ - Different balance ranges (small to large accounts)
251
+
252
+ **Regional Coverage:**
253
+ - Major metros: Mumbai, Delhi, Bangalore, Pune, Chennai, Kolkata, Hyderabad
254
+ - Business entities: IT companies, manufacturing firms, retail chains, financial services
255
+ - Mix of B2B transactions (business-to-business) and individual transactions
256
+
257
+ **Temporal Patterns:**
258
+ - Quarterly statement periods (3-month spans)
259
+ - Monthly salary/revenue patterns for businesses
260
+ - Vendor payment cycles
261
+ - Service charge applications (monthly/quarterly)
262
+ - Weekend vs weekday transaction patterns
263
+
264
+ #### Who are the source data producers?
265
+
266
+ This is entirely synthetic data generated algorithmically by AgamiAI Inc. No real individuals, businesses, banks, or merchants contributed actual transaction data.
267
+
268
+ ### Annotations
269
+
270
+ Transaction types and metadata were assigned algorithmically based on transaction patterns:
271
+ - **Transaction Type Classification**: UPI, NEFT, RTGS, IMPS, Cheque, ATM, Cash automatically tagged
272
+ - **Entity Extraction**: Merchant names, bank names, reference numbers systematically generated
273
+ - **Temporal Features**: Date, value_date, and statement periods logically consistent
274
+
275
+ #### Personal and Sensitive Information
276
+
277
+ **This dataset contains NO real personal or financial information.** All elements are synthetically generated:
278
+ - Account numbers: Fictional/masked
279
+ - Business names: Generated (mix of real company name patterns and fictional entities)
280
+ - Individual names: Generated using Indian naming patterns
281
+ - Phone numbers: Synthetic (10-digit format)
282
+ - Addresses: Fictional but realistic (actual area/city names with fictional building/street)
283
+ - IFSC codes: Synthetic (following standard format)
284
+ - MICR codes: Fictional
285
+ - Transaction amounts: Statistically modeled
286
+ - Balances: Generated based on transaction flows
287
+ - Branch details: Fictional branches with realistic naming
288
+
289
+ No real individuals or businesses can be identified from this data.
290
+
291
+ ## Bias, Risks, and Limitations
292
+
293
+ **Known Limitations:**
294
+
295
+ 1. **No Fraud Patterns**: Dataset contains only legitimate transactions - NOT suitable for fraud detection training
296
+ 2. **Urban/Business Bias**: Reflects urban business banking behaviors more than rural or very small-scale individual banking
297
+ 3. **Transaction Volume**: Business current accounts may show different patterns than retail savings accounts
298
+ 4. **Regional Coverage**: While multi-regional, may not capture all linguistic and business variations across India's states
299
+ 5. **Temporal Simplification**: Seasonal business patterns simplified compared to real-world complexity
300
+ 6. **Document Variations**: Scanned PDFs may not capture all possible bank statement layouts and formats used across Indian banks
301
+ 7. **OCR Challenges**: Scanned documents generated synthetically may not include all real-world OCR challenges (handwriting, stamps, poor scans)
302
+
303
+ **Technical Limitations:**
304
+
305
+ - Transaction description formats standardized; real statements have more variation
306
+ - Failed/reversed transactions simplified compared to real-world complexity
307
+ - Cross-border transactions limited or excluded
308
+ - Does not include all possible service charges and bank fees
309
+ - Statement formats limited to common layouts (not exhaustive of all Indian banks)
310
+
311
+ **Social and Ethical Considerations:**
312
+
313
+ - Dataset reflects formal banking sector; excludes informal financial systems
314
+ - Business transactions may not represent individual consumer spending patterns
315
+ - Modern digital payment heavy; traditional banking methods (cash, cheques) represented but lower frequency
316
+ - Should not be used to make assumptions about real businesses' or individuals' financial behaviors
317
+
318
+ ### Recommendations
319
+
320
+ **For Model Developers:**
321
+ - Use for document AI, OCR, and information extraction training
322
+ - Validate extraction models on real anonymized data before production
323
+ - This is suitable for structure and format learning, not for behavioral modeling
324
+ - **Do NOT use for fraud detection** - lacks fraudulent transaction patterns
325
+ - Consider using AgamiAI's platform for deploying privacy-preserving AI models trained on this data
326
+
327
+ **For Researchers:**
328
+ - Clearly disclose use of synthetic data in publications
329
+ - Focus research on document understanding, not financial behavior
330
+ - Validate findings with real data where possible
331
+ - Consider this for algorithm development, not financial insights
332
+
333
+ **For Banking/Fintech Applications:**
334
+ - Excellent for testing document processing pipelines
335
+ - Use for UI/UX testing with realistic-looking statements
336
+ - Good for training staff on document review workflows
337
+ - Do NOT use for actual financial analysis or compliance
338
+ - Validate regulatory requirements with real anonymized data
339
+ - For production deployment of AI solutions, consider AgamiAI's private AI platform for secure, compliant deployment
340
+
341
+ **For Document AI Tasks:**
342
+ - Train table extraction models on the scanned PDF format
343
+ - Use JSON for ground truth validation
344
+ - Test entity recognition and classification systems
345
+ - Benchmark OCR accuracy across different statement formats
346
+
347
+ ## Citation
348
+
349
+ **BibTeX:**
350
+
351
+ ```bibtex
352
+ @dataset{indian_bank_statement_synthetic_2025,
353
+ author = {AgamiAI Inc.},
354
+ title = {Indian Bank Statement Synthetic Dataset},
355
+ year = {2025},
356
+ publisher = {HuggingFace},
357
+ url = {https://huggingface.co/datasets/agami-ai/indian-bank-statements}
358
+ }
359
+ ```
360
+
361
+ **APA:**
362
+
363
+ AgamiAI Inc. (2025). *Indian Bank Statement Synthetic Dataset* [Data set]. HuggingFace. https://huggingface.co/datasets/agami-ai/indian-bank-statements
364
+
365
+ ## Glossary
366
+
367
+ **Indian Banking Terms:**
368
+
369
+ - **UPI (Unified Payments Interface)**: India's instant real-time payment system, the most popular digital payment method
370
+ - **NEFT (National Electronic Funds Transfer)**: Batch processing system for interbank transfers (half-hourly settlements)
371
+ - **RTGS (Real Time Gross Settlement)**: Real-time bank transfer system for high-value transactions (typically ₹2 lakh+)
372
+ - **IMPS (Immediate Payment Service)**: Instant interbank transfer service, 24/7 availability
373
+ - **IFSC Code**: Indian Financial System Code - unique 11-character code identifying bank branches (e.g., HDFC0001234)
374
+ - **MICR Code**: Magnetic Ink Character Recognition code - 9-digit code for cheque processing
375
+ - **Current Account**: Business/commercial account with no transaction limits, no interest
376
+ - **Savings Account**: Individual account with transaction limits, earns interest
377
+ - **Value Date**: Date when funds are actually debited/credited (may differ from transaction date)
378
+ - **Reversal**: Failed transaction that was initially processed but later reversed
379
+
380
+ **Document Formats:**
381
+
382
+ - **Scanned PDF**: Image-based PDF mimicking scanned bank statements (for OCR training)
383
+ - **Digital JSON**: Structured data format with all statement and transaction details
384
+ - **Separate Columns Format**: Traditional format with distinct Debit and Credit columns
385
+ - **Single Column Format**: Combined format where transactions show +/- in one column
386
+
387
+ ## More Information
388
+
389
+ ### About AgamiAI
390
+
391
+ AgamiAI Inc. builds private AI solutions for enterprise clients, with a focus on industries where privacy, accuracy, and compliance are non-negotiable. Our platform delivers:
392
+
393
+ - **Private by Design**: AI models fine-tuned with your data, deployed securely in your cloud
394
+ - **Agentic AI**: Adaptive agents for documents, research, insights, and workflow automation
395
+ - **Enterprise-Grade**: Built for accuracy, compliance, and scalability with secure deployment
396
+ - **Industry Focus**: Specialized solutions for Finance, Healthcare, Legal, Consulting, and Research
397
+
398
+ AgamiAI's team brings deep experience from companies like Google, Meta, and Airtable, with a mission to help enterprises turn AI into real business impact while maintaining trust, precision, and control over their data.
399
+
400
+ Visit us at: **https://www.agami.ai**
401
+
402
+ ### File Structure
403
+
404
+ Each statement in the dataset includes:
405
+ - `[statement_id].pdf` - Scanned bank statement (PDF format)
406
+ - `[statement_id].json` - Structured data (JSON format with full metadata)
407
+
408
+ ### Validation Approach
409
+
410
+ Quality was validated through:
411
+ - JSON schema validation for all structured data
412
+ - Balance calculation verification (running balances mathematically correct)
413
+ - Format consistency checks across scanned and digital versions
414
+ - Expert review by professionals
415
+ - Cross-validation between PDF and JSON content
416
+
417
+ ### Future Updates
418
+
419
+ Planned enhancements may include:
420
+ - Additional regional merchant diversity
421
+ - More bank formats and statement styles
422
+ - International transaction patterns
423
+ - Investment and trading transactions
424
+ - Loan and credit card statement formats
425
+ - Fraudulent transactions
426
+
427
+ ## Dataset Card Authors
428
+
429
+ AgamiAI Inc.
430
+
431
+ ## Dataset Card Contact
432
+
433
+ For questions, feedback, or collaboration opportunities:
434
+ - **Website**: https://www.agami.ai
435
+ - **Email**: Contact us through our website
436
+ - **HuggingFace**: https://huggingface.co/agami-ai
437
+
438
+ ---
439
+
440
+ **Version:** 1.0.0
441
+ **Last Updated:** November 2025
442
+
443
+ **License:** Apache 2.0
444
+
445
+ **Privacy Notice:** This dataset contains entirely synthetic data. No real personal or financial information is included.