sandeepkachru commited on
Commit
e921370
·
verified ·
1 Parent(s): e6bfa91

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -331
README.md CHANGED
@@ -20,81 +20,57 @@ tags:
20
  pretty_name: Indian Bank Statement Synthetic Dataset
21
  ---
22
 
23
- # Dataset Card for Indian Bank Statement Synthetic Dataset
24
 
25
- This dataset contains synthetically generated Indian bank statements with realistic transaction patterns, merchant names, regional variations, and proper banking workflows representative of the Indian financial ecosystem. Available in both **scanned PDF** and **digital (structured JSON)** formats.
26
 
27
- ## Dataset Details
28
-
29
- ### Dataset Description
30
-
31
- This is a comprehensive synthetic dataset of Indian bank transactions designed to reflect realistic banking behaviors across multiple Indian banks, payment systems (UPI, NEFT, IMPS, RTGS), and transaction types. The dataset incorporates regional naming patterns, realistic transaction flows, running balance calculations, and India-specific banking features such as UPI reference numbers, IFSC codes, MICR codes, and merchant identifiers commonly seen in Indian bank statements.
32
-
33
- The dataset includes both **Current Accounts** (business banking) and **Savings Accounts** (individual banking) with transactions in two statement formats:
34
- - **Separate Debit/Credit Columns**: Traditional format with distinct debit and credit columns
35
- - **Single Transaction Column**: Combined format where debits and credits appear in one column with +/- indicators
36
 
37
- Each statement is provided in:
38
- - **Scanned PDF format**: Visual representation mimicking actual bank statement PDFs (suitable for OCR and document understanding tasks)
39
- - **Digital JSON format**: Structured data with rich metadata including account details, branch information, and transaction records
40
-
41
- **Note:** This dataset contains only legitimate transactions. It does NOT include fraudulent transactions or fraud patterns.
42
 
43
  - **Curated by:** AgamiAI Inc.
44
- - **Funded by:** AgamiAI Inc.
45
- - **Language(s):** English (primary), Hindi (romanized merchant/location names)
46
  - **License:** Apache 2.0
 
 
47
 
48
- ### Dataset Sources
49
-
50
- - **Company Website:** https://www.agami.ai
51
 
52
  ## Uses
53
 
54
- ### Direct Use
55
-
56
- This dataset is suitable for:
57
- - **Document AI and OCR training**: Extract text and tables from scanned bank statement PDFs
58
- - **Information Extraction**: Train models to identify and extract key fields (account numbers, balances, transaction details)
59
- - **Transaction categorization and classification**: Classify transactions by type, merchant category, or purpose
60
- - **Financial document understanding**: Build systems that comprehend bank statement structure and semantics
61
- - **Chatbot and copilot training**: Train financial assistants to answer questions about bank statements
62
- - **Data processing pipeline testing**: Validate ETL systems for banking data
63
- - **Table extraction and parsing**: Train models to extract tabular transaction data from PDFs
64
- - **Named Entity Recognition (NER)**: Identify merchant names, locations, and banking entities
65
- - **Educational purposes**: Fintech and data science coursework
66
- - **Agentic AI development**: Train private AI agents for financial document processing workflows
67
-
68
- ### Out-of-Scope Use
69
-
70
- This dataset should NOT be used for:
71
- - **Fraud detection or anti-money laundering (AML)**: Dataset does not contain fraudulent patterns
72
- - **Production compliance or regulatory reporting**: This is not real financial data
73
- - **Training models for actual credit decisions**: Lacks real creditworthiness signals
74
- - **Assuming complete representation** of all Indian demographics, regions, or banking behaviors
75
- - **Real-world anomaly detection**: Synthetic anomalies may not match real-world patterns
76
 
77
  ## Dataset Structure
78
 
79
  ### Statement Formats
80
 
81
- The dataset includes two transaction column formats:
82
-
83
- **Format 1: Separate Debit/Credit Columns (Traditional)**
84
  | Date | Description | Debit | Credit | Balance |
85
  |------|-------------|-------|--------|---------|
86
- | 01/01/2024 | UPI-Swiggy | 450.00 | - | 25,780.50 |
87
- | 02/01/2024 | NEFT Salary Credit | - | 50,000.00 | 75,780.50 |
88
 
89
- **Format 2: Single Transaction Column (Combined)**
90
  | Date | Description | Transaction | Balance |
91
  |------|-------------|-------------|---------|
92
- | 01/01/2024 | UPI-Swiggy | -450.00 | 25,780.50 |
93
- | 02/01/2024 | NEFT Salary Credit | +50,000.00 | 75,780.50 |
94
 
95
- ### JSON Data Structure
96
-
97
- Each statement includes a comprehensive JSON file with the following structure:
98
 
99
  ```json
100
  {
@@ -106,7 +82,6 @@ Each statement includes a comprehensive JSON file with the following structure:
106
  "micr_code": "899946557",
107
  "branch_name": "PUNE HINJEWADI",
108
  "branch_code": "6738",
109
- "branch_phone": "8647919953",
110
  "account_type": "CURRENT ACCOUNT- GENERAL",
111
  "currency": "INR",
112
  "customer_id": "134743833",
@@ -116,232 +91,75 @@ Each statement includes a comprehensive JSON file with the following structure:
116
  "end_date": "2024-03-31",
117
  "statement_date": "2025-11-20",
118
  "interest_rate": 2.83,
119
- "transactions": [...]
 
 
 
 
 
 
 
 
 
 
 
 
120
  }
121
  ```
122
 
123
- ### Transaction Record Structure
124
 
125
- Each transaction in the `transactions` array contains:
 
 
 
 
 
 
 
 
126
 
127
- ```json
128
- {
129
- "date": "2024-01-01 12:40:40",
130
- "value_date": "2024-01-01",
131
- "description": "NEFT Dr-471179370408-HDFC0009038-RIDDHI RAVAL",
132
- "cheque_no": "862512",
133
- "debit": 13932.79,
134
- "credit": null,
135
- "balance": 144525.24,
136
- "branch_code": "3421",
137
- "failed": false
138
- }
139
- ```
140
 
141
- ### Data Fields
142
-
143
- **Statement-Level Metadata:**
144
-
145
- | Field | Type | Description |
146
- |-------|------|-------------|
147
- | `bank_name` | string | Name of the bank issuing the statement |
148
- | `account_holder` | string | Name of account holder (individual or business) |
149
- | `account_holder_address` | string | Complete address with line breaks |
150
- | `account_number` | string | Bank account number |
151
- | `ifsc_code` | string | Indian Financial System Code (11 characters) |
152
- | `micr_code` | string | Magnetic Ink Character Recognition code |
153
- | `branch_name` | string | Name and location of branch |
154
- | `branch_code` | string | Branch identifier code |
155
- | `branch_phone` | string | Branch contact phone number |
156
- | `account_type` | string | Account type (Savings/Current, with sub-type) |
157
- | `currency` | string | Currency (INR for all records) |
158
- | `customer_id` | string | Bank's internal customer identifier |
159
- | `opening_balance` | float | Account balance at statement start |
160
- | `closing_balance` | float | Account balance at statement end |
161
- | `start_date` | string | Statement period start date (YYYY-MM-DD) |
162
- | `end_date` | string | Statement period end date (YYYY-MM-DD) |
163
- | `statement_date` | string | Date statement was generated |
164
- | `interest_rate` | float | Current interest rate (% per annum) |
165
-
166
- **Transaction-Level Fields:**
167
-
168
- | Field | Type | Description |
169
- |-------|------|-------------|
170
- | `date` | string | Transaction date and time (YYYY-MM-DD HH:MM:SS) |
171
- | `value_date` | string | Value date (when funds cleared) |
172
- | `description` | string | Full transaction description with bank codes and merchant info |
173
- | `cheque_no` | string | Cheque number (empty string if not applicable) |
174
- | `debit` | float | Debit amount in INR (null if credit transaction) |
175
- | `credit` | float | Credit amount in INR (null if debit transaction) |
176
- | `balance` | float | Running account balance after transaction |
177
- | `branch_code` | string | Branch code where transaction occurred |
178
- | `failed` | boolean | Transaction failure status (false for successful, true for failed/reversed) |
179
-
180
- ### Transaction Types Included
181
-
182
- - **UPI (Unified Payments Interface)**: UPI/DR, UPI/CR with reference numbers
183
- - **NEFT (National Electronic Funds Transfer)**: NEFT Dr, NEFT Cr with bank codes
184
- - **RTGS (Real Time Gross Settlement)**: RTGS Dr, RTGS Cr for high-value transfers
185
- - **IMPS (Immediate Payment Service)**: IMPS Dr, IMPS Cr, IMPS Salary Transfers
186
- - **Cheque Transactions**: Chq Paid, By Clg (Clearing)
187
- - **Cash Transactions**: Cash Withdrawal, Cash Deposit (CASH-BNA-SELF)
188
- - **ATM Transactions**: ATM WDL (Withdrawal)
189
- - **Service Charges**: Various bank fees (online banking, statement charges, forex markup)
190
- - **Reversals**: Failed transaction reversals with REVERSAL prefix
191
-
192
- ### Account Types
193
-
194
- - **Savings Accounts**: Individual banking with lower transaction volumes
195
- - **Current Accounts**: Business banking with higher transaction volumes and no transaction limits
196
-
197
- ### Data Splits
198
-
199
- The dataset is organized into train, validation, and test splits to support machine learning workflows. Specific split sizes are available in the dataset repository.
200
 
201
- ## Dataset Creation
202
 
203
- ### Curation Rationale
 
 
 
 
204
 
205
- India has one of the world's fastest-growing digital payment ecosystems, with UPI processing billions of transactions monthly. However, publicly available datasets for training AI models on Indian financial documents are scarce due to privacy and regulatory constraints.
206
-
207
- AgamiAI created this synthetic dataset to support the development of privacy-preserving, accurate AI solutions for financial services. As a company specializing in private AI agents for enterprise clients, particularly in financial services, AgamiAI recognized the critical need for high-quality training data that:
208
-
209
- 1. Enables development and testing of document AI systems for Indian bank statements
210
- 2. Supports OCR and information extraction model training on scanned financial documents
211
- 3. Provides realistic training data reflecting India-specific payment systems and banking formats
212
- 4. Allows developers to build and test banking applications without accessing real customer data
213
- 5. Includes both scanned (unstructured) and digital (structured) formats for comprehensive document understanding tasks
214
- 6. Supports research in transaction classification, document parsing, and financial NLP
215
- 7. Facilitates the development of agentic AI workflows for financial document processing
216
 
217
- ### Source Data
 
 
 
 
 
 
218
 
219
- #### Data Collection and Processing
220
 
221
- This is a **fully synthetic dataset** with no real customer information. The generation process leverages AgamiAI's expertise in building enterprise-grade AI solutions and includes:
222
-
223
- **Statement Generation:**
224
- - Two format types: separate debit/credit columns and single combined transaction column
225
- - Both scanned PDF (for OCR tasks) and structured JSON (for direct data processing)
226
- - Realistic bank statement templates matching actual Indian bank formats
227
- - Proper letterheads, logos, and formatting (synthetic bank brands)
228
-
229
- **Transaction Generation:**
230
- - Probabilistic modeling of realistic transaction patterns (frequency, amounts, timing)
231
- - Proper debit/credit flows with accurate running balance calculations
232
- - Transaction type distribution matching Indian banking patterns (high UPI usage, business-focused NEFT/RTGS)
233
- - Salary credits, vendor payments, cash management at realistic intervals
234
- - Transaction reversals and failed transactions for realistic edge cases
235
-
236
- **Indian Banking Features:**
237
- - UPI reference numbers following standard 12-digit formats
238
- - NEFT/RTGS reference numbers with bank codes (HDFC, ICICI, Citi, etc.)
239
- - Realistic business and individual names across Indian regions
240
- - IFSC codes following standard format (BANK0123456)
241
- - MICR codes (9 digits)
242
- - Branch codes and locations
243
- - Service charges and bank fees
244
-
245
- **Account Variations:**
246
- - Current Accounts: Business entities (companies, partnerships)
247
- - Savings Accounts: Individual account holders
248
- - Various transaction volumes (low to high frequency)
249
- - Different balance ranges (small to large accounts)
250
-
251
- **Regional Coverage:**
252
- - Major metros: Mumbai, Delhi, Bangalore, Pune, Chennai, Kolkata, Hyderabad
253
- - Business entities: IT companies, manufacturing firms, retail chains, financial services
254
- - Mix of B2B transactions (business-to-business) and individual transactions
255
-
256
- **Temporal Patterns:**
257
- - Quarterly statement periods (3-month spans)
258
- - Monthly salary/revenue patterns for businesses
259
- - Vendor payment cycles
260
- - Service charge applications (monthly/quarterly)
261
- - Weekend vs weekday transaction patterns
262
-
263
- #### Who are the source data producers?
264
-
265
- This is entirely synthetic data generated algorithmically by AgamiAI Inc. No real individuals, businesses, banks, or merchants contributed actual transaction data.
266
-
267
- ### Annotations
268
-
269
- Transaction types and metadata were assigned algorithmically based on transaction patterns:
270
- - **Transaction Type Classification**: UPI, NEFT, RTGS, IMPS, Cheque, ATM, Cash automatically tagged
271
- - **Entity Extraction**: Merchant names, bank names, reference numbers systematically generated
272
- - **Temporal Features**: Date, value_date, and statement periods logically consistent
273
-
274
- #### Personal and Sensitive Information
275
-
276
- **This dataset contains NO real personal or financial information.** All elements are synthetically generated:
277
- - Account numbers: Fictional/masked
278
- - Business names: Generated (mix of real company name patterns and fictional entities)
279
- - Individual names: Generated using Indian naming patterns
280
- - Phone numbers: Synthetic (10-digit format)
281
- - Addresses: Fictional but realistic (actual area/city names with fictional building/street)
282
- - IFSC codes: Synthetic (following standard format)
283
- - MICR codes: Fictional
284
- - Transaction amounts: Statistically modeled
285
- - Balances: Generated based on transaction flows
286
- - Branch details: Fictional branches with realistic naming
287
-
288
- No real individuals or businesses can be identified from this data.
289
-
290
- ## Bias, Risks, and Limitations
291
-
292
- **Known Limitations:**
293
-
294
- 1. **No Fraud Patterns**: Dataset contains only legitimate transactions - NOT suitable for fraud detection training
295
- 2. **Urban/Business Bias**: Reflects urban business banking behaviors more than rural or very small-scale individual banking
296
- 3. **Transaction Volume**: Business current accounts may show different patterns than retail savings accounts
297
- 4. **Regional Coverage**: While multi-regional, may not capture all linguistic and business variations across India's states
298
- 5. **Temporal Simplification**: Seasonal business patterns simplified compared to real-world complexity
299
- 6. **Document Variations**: Scanned PDFs may not capture all possible bank statement layouts and formats used across Indian banks
300
- 7. **OCR Challenges**: Scanned documents generated synthetically may not include all real-world OCR challenges (handwriting, stamps, poor scans)
301
-
302
- **Technical Limitations:**
303
-
304
- - Transaction description formats standardized; real statements have more variation
305
- - Failed/reversed transactions simplified compared to real-world complexity
306
- - Cross-border transactions limited or excluded
307
- - Does not include all possible service charges and bank fees
308
- - Statement formats limited to common layouts (not exhaustive of all Indian banks)
309
-
310
- **Social and Ethical Considerations:**
311
-
312
- - Dataset reflects formal banking sector; excludes informal financial systems
313
- - Business transactions may not represent individual consumer spending patterns
314
- - Modern digital payment heavy; traditional banking methods (cash, cheques) represented but lower frequency
315
- - Should not be used to make assumptions about real businesses' or individuals' financial behaviors
316
-
317
- ### Recommendations
318
-
319
- **For Model Developers:**
320
- - Use for document AI, OCR, and information extraction training
321
- - Validate extraction models on real anonymized data before production
322
- - This is suitable for structure and format learning, not for behavioral modeling
323
- - **Do NOT use for fraud detection** - lacks fraudulent transaction patterns
324
- - Consider using AgamiAI's platform for deploying privacy-preserving AI models trained on this data
325
-
326
- **For Researchers:**
327
- - Clearly disclose use of synthetic data in publications
328
- - Focus research on document understanding, not financial behavior
329
- - Validate findings with real data where possible
330
- - Consider this for algorithm development, not financial insights
331
-
332
- **For Banking/Fintech Applications:**
333
- - Excellent for testing document processing pipelines
334
- - Use for UI/UX testing with realistic-looking statements
335
- - Good for training staff on document review workflows
336
- - Do NOT use for actual financial analysis or compliance
337
- - Validate regulatory requirements with real anonymized data
338
- - For production deployment of AI solutions, consider AgamiAI's private AI platform for secure, compliant deployment
339
-
340
- **For Document AI Tasks:**
341
- - Train table extraction models on the scanned PDF format
342
- - Use JSON for ground truth validation
343
- - Test entity recognition and classification systems
344
- - Benchmark OCR accuracy across different statement formats
345
 
346
  ## Citation
347
 
@@ -353,92 +171,54 @@ No real individuals or businesses can be identified from this data.
353
  title = {Indian Bank Statement Synthetic Dataset},
354
  year = {2025},
355
  publisher = {HuggingFace},
356
- url = {https://huggingface.co/datasets/agami-ai/indian-bank-statements}
357
  }
358
  ```
359
 
360
  **APA:**
361
 
362
- AgamiAI Inc. (2025). *Indian Bank Statement Synthetic Dataset* [Data set]. HuggingFace. https://huggingface.co/datasets/agami-ai/indian-bank-statements
363
 
364
  ## Glossary
365
 
366
  **Indian Banking Terms:**
367
-
368
- - **UPI (Unified Payments Interface)**: India's instant real-time payment system, the most popular digital payment method
369
- - **NEFT (National Electronic Funds Transfer)**: Batch processing system for interbank transfers (half-hourly settlements)
370
- - **RTGS (Real Time Gross Settlement)**: Real-time bank transfer system for high-value transactions (typically ₹2 lakh+)
371
- - **IMPS (Immediate Payment Service)**: Instant interbank transfer service, 24/7 availability
372
- - **IFSC Code**: Indian Financial System Code - unique 11-character code identifying bank branches (e.g., HDFC0001234)
373
- - **MICR Code**: Magnetic Ink Character Recognition code - 9-digit code for cheque processing
374
- - **Current Account**: Business/commercial account with no transaction limits, no interest
375
- - **Savings Account**: Individual account with transaction limits, earns interest
376
- - **Value Date**: Date when funds are actually debited/credited (may differ from transaction date)
377
- - **Reversal**: Failed transaction that was initially processed but later reversed
378
-
379
- **Document Formats:**
380
-
381
- - **Scanned PDF**: Image-based PDF mimicking scanned bank statements (for OCR training)
382
- - **Digital JSON**: Structured data format with all statement and transaction details
383
- - **Separate Columns Format**: Traditional format with distinct Debit and Credit columns
384
- - **Single Column Format**: Combined format where transactions show +/- in one column
385
 
386
  ## More Information
387
 
388
  ### About AgamiAI
389
 
390
- AgamiAI Inc. builds private AI solutions for enterprise clients, with a focus on industries where privacy, accuracy, and compliance are non-negotiable. Our platform delivers:
391
 
392
- - **Private by Design**: AI models fine-tuned with your data, deployed securely in your cloud
393
- - **Agentic AI**: Adaptive agents for documents, research, insights, and workflow automation
394
- - **Enterprise-Grade**: Built for accuracy, compliance, and scalability with secure deployment
395
- - **Industry Focus**: Specialized solutions for Finance, Healthcare, Legal, Consulting, and Research
396
-
397
- AgamiAI's team brings deep experience from companies like Google, Meta, and Airtable, with a mission to help enterprises turn AI into real business impact while maintaining trust, precision, and control over their data.
398
-
399
- Visit us at: **https://www.agami.ai**
400
 
401
  ### File Structure
402
 
403
- Each statement in the dataset includes:
404
- - `[statement_id].pdf` - Scanned bank statement (PDF format)
405
- - `[statement_id].json` - Structured data (JSON format with full metadata)
406
-
407
- ### Validation Approach
408
-
409
- Quality was validated through:
410
- - JSON schema validation for all structured data
411
- - Balance calculation verification (running balances mathematically correct)
412
- - Format consistency checks across scanned and digital versions
413
- - Expert review by professionals
414
- - Cross-validation between PDF and JSON content
415
 
416
- ### Future Updates
417
 
418
- Planned enhancements may include:
419
- - Additional regional merchant diversity
420
- - More bank formats and statement styles
421
- - International transaction patterns
422
- - Investment and trading transactions
423
- - Loan and credit card statement formats
424
- - Fraudulent transactions
425
 
426
- ## Dataset Card Authors
427
 
428
- AgamiAI Inc.
429
-
430
- ## Dataset Card Contact
431
-
432
- For questions, feedback, or collaboration opportunities:
433
  - **Website**: https://www.agami.ai
434
- - **Email**: Contact us through our website
435
- - **HuggingFace**: https://huggingface.co/agami-ai
436
 
437
  ---
438
 
439
- **Version:** 1.0.0
440
- **Last Updated:** November 2025
441
-
442
- **License:** Apache 2.0
443
 
444
- **Privacy Notice:** This dataset contains entirely synthetic data. No real personal or financial information is included.
 
20
  pretty_name: Indian Bank Statement Synthetic Dataset
21
  ---
22
 
23
+ # Indian Bank Statement Synthetic Dataset
24
 
25
+ Synthetically generated Indian **business bank statements** with realistic transaction patterns, proper banking workflows, and India-specific features. Available in **scanned PDF** and **digital JSON** formats.
26
 
27
+ **Scope:** Current Accounts (business banking) only. Does not include personal/savings accounts.
 
 
 
 
 
 
 
 
28
 
29
+ ## Dataset Details
 
 
 
 
30
 
31
  - **Curated by:** AgamiAI Inc.
32
+ - **Language(s):** English, Hindi (romanized)
 
33
  - **License:** Apache 2.0
34
+ - **Repository:** https://huggingface.co/datasets/AgamiAI/Indian-Bank-Statements
35
+ - **Website:** https://www.agami.ai
36
 
37
+ **Note:** Contains only legitimate transactions (no fraud patterns).
 
 
38
 
39
  ## Uses
40
 
41
+ ### Suitable For
42
+ - Document AI and OCR training
43
+ - Information extraction (account numbers, balances, transactions)
44
+ - Transaction categorization and classification
45
+ - Financial document understanding
46
+ - Table extraction and parsing
47
+ - Named Entity Recognition (NER)
48
+ - Testing data processing pipelines
49
+ - Educational purposes
50
+
51
+ ### Not Suitable For
52
+ - Fraud detection or AML (no fraudulent patterns)
53
+ - Production compliance or regulatory reporting
54
+ - Credit decisions (lacks real creditworthiness signals)
55
+ - Personal banking AI (business accounts only)
 
 
 
 
 
 
 
56
 
57
  ## Dataset Structure
58
 
59
  ### Statement Formats
60
 
61
+ **Type 1: Separate Debit/Credit Columns**
 
 
62
  | Date | Description | Debit | Credit | Balance |
63
  |------|-------------|-------|--------|---------|
64
+ | 01/01/2024 | UPI-Vendor | 450.00 | - | 25,780.50 |
65
+ | 02/01/2024 | NEFT Credit | - | 50,000.00 | 75,780.50 |
66
 
67
+ **Type 2: Single Transaction Column**
68
  | Date | Description | Transaction | Balance |
69
  |------|-------------|-------------|---------|
70
+ | 01/01/2024 | UPI-Vendor | -450.00 | 25,780.50 |
71
+ | 02/01/2024 | NEFT Credit | +50,000.00 | 75,780.50 |
72
 
73
+ ### JSON Structure
 
 
74
 
75
  ```json
76
  {
 
82
  "micr_code": "899946557",
83
  "branch_name": "PUNE HINJEWADI",
84
  "branch_code": "6738",
 
85
  "account_type": "CURRENT ACCOUNT- GENERAL",
86
  "currency": "INR",
87
  "customer_id": "134743833",
 
91
  "end_date": "2024-03-31",
92
  "statement_date": "2025-11-20",
93
  "interest_rate": 2.83,
94
+ "transactions": [
95
+ {
96
+ "date": "2024-01-01 12:40:40",
97
+ "value_date": "2024-01-01",
98
+ "description": "NEFT Dr-471179370408-HDFC0009038-RIDDHI RAVAL",
99
+ "cheque_no": "862512",
100
+ "debit": 13932.79,
101
+ "credit": null,
102
+ "balance": 144525.24,
103
+ "branch_code": "3421",
104
+ "failed": false
105
+ }
106
+ ]
107
  }
108
  ```
109
 
110
+ ### Transaction Types
111
 
112
+ - **UPI**: Unified Payments Interface (DR/CR)
113
+ - **NEFT**: National Electronic Funds Transfer
114
+ - **RTGS**: Real Time Gross Settlement (high-value)
115
+ - **IMPS**: Immediate Payment Service, salary transfers
116
+ - **Cheques**: Chq Paid, By Clg (Clearing)
117
+ - **Cash**: Withdrawals and deposits
118
+ - **ATM**: ATM withdrawals
119
+ - **Service Charges**: Bank fees
120
+ - **Reversals**: Failed transaction reversals
121
 
122
+ ## Dataset Creation
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
+ ### Why This Dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
126
+ India's digital payment ecosystem is rapidly growing, but publicly available datasets for training AI models on Indian business banking documents are scarce due to privacy constraints. This dataset provides production-quality synthetic data for:
127
 
128
+ - Training document AI on Indian bank statement formats
129
+ - Testing OCR and information extraction systems
130
+ - Building fintech applications without real customer data
131
+ - Both scanned (unstructured) and digital (structured) formats
132
+ - India-specific payment systems (UPI, IMPS, NEFT, RTGS)
133
 
134
+ ### Data Generation
 
 
 
 
 
 
 
 
 
 
135
 
136
+ **Fully synthetic** - no real customer information:
137
+ - Probabilistic modeling of realistic business transaction patterns
138
+ - Proper debit/credit flows with accurate balance calculations
139
+ - India-specific features: UPI references, IFSC/MICR codes, Indian business names
140
+ - Business entities: IT companies, manufacturing, retail, financial services
141
+ - Geographic coverage: Mumbai, Delhi, Bangalore, Pune, Chennai, Kolkata, Hyderabad
142
+ - Both scanned PDFs and structured JSON
143
 
144
+ All data is algorithmically generated. No real individuals or businesses contributed data.
145
 
146
+ ### What's Included
147
+
148
+ - **Account holders:** Business entities (companies, partnerships, corporations)
149
+ - **Transaction patterns:** B2B payments, employee salaries, vendor payments, business expenses
150
+ - **Regional diversity:** Major Indian metros
151
+ - **Temporal patterns:** Quarterly statements, monthly salary cycles, vendor payment patterns
152
+
153
+ ## Limitations
154
+
155
+ 1. **No fraud patterns** - Not suitable for fraud detection
156
+ 2. **Business-only** - No personal/savings account patterns
157
+ 3. **Urban business focus** - May not represent rural small businesses
158
+ 4. **Simplified patterns** - Real-world complexity is higher
159
+ 5. **Format coverage** - Common layouts only, not exhaustive
160
+ 6. **Synthetic OCR** - May not include all real-world OCR challenges
161
+
162
+ This dataset is for structure and format learning, not behavioral modeling. Always validate on real data before production deployment.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
 
164
  ## Citation
165
 
 
171
  title = {Indian Bank Statement Synthetic Dataset},
172
  year = {2025},
173
  publisher = {HuggingFace},
174
+ url = {https://huggingface.co/datasets/AgamiAI/Indian-Bank-Statements}
175
  }
176
  ```
177
 
178
  **APA:**
179
 
180
+ AgamiAI Inc. (2025). *Indian Bank Statement Synthetic Dataset* [Data set]. HuggingFace. https://huggingface.co/datasets/AgamiAI/Indian-Bank-Statements
181
 
182
  ## Glossary
183
 
184
  **Indian Banking Terms:**
185
+ - **UPI**: Unified Payments Interface - instant real-time payment system
186
+ - **NEFT**: National Electronic Funds Transfer - batch processing (half-hourly)
187
+ - **RTGS**: Real Time Gross Settlement - high-value transactions (₹2 lakh+)
188
+ - **IMPS**: Immediate Payment Service - instant transfer, 24/7
189
+ - **IFSC Code**: Indian Financial System Code - 11-character bank branch identifier
190
+ - **MICR Code**: Magnetic Ink Character Recognition - 9-digit code for cheque processing
191
+ - **Current Account**: Business/commercial account, no transaction limits
 
 
 
 
 
 
 
 
 
 
 
192
 
193
  ## More Information
194
 
195
  ### About AgamiAI
196
 
197
+ AgamiAI builds private AI solutions for enterprises where privacy, accuracy, and compliance are critical. Specialized in Finance, Healthcare, Legal, and Consulting.
198
 
199
+ Visit: **https://www.agami.ai**
 
 
 
 
 
 
 
200
 
201
  ### File Structure
202
 
203
+ Each statement includes:
204
+ - `[statement_id].pdf` - Scanned bank statement
205
+ - `[statement_id].json` - Structured data with full metadata
 
 
 
 
 
 
 
 
 
206
 
207
+ ### Related Datasets
208
 
209
+ Part of AgamiAI's Indian Financial Documents collection:
210
+ - **Indian Bank Statements** (this dataset)
211
+ - Indian GST Documents (coming soon)
212
+ - Indian Tax Documents (coming soon)
213
+ - Indian Audited Financial Documents (coming soon)
 
 
214
 
215
+ ### Contact
216
 
 
 
 
 
 
217
  - **Website**: https://www.agami.ai
218
+ - **HuggingFace**: https://huggingface.co/AgamiAI
 
219
 
220
  ---
221
 
222
+ **Version:** 1.0.0 | **License:** Apache 2.0 | **Last Updated:** November 2025
 
 
 
223
 
224
+ **Privacy Notice:** Entirely synthetic data. No real personal or financial information included.