pszemraj commited on
Commit
51eb507
·
verified ·
1 Parent(s): 169dbc0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -2
README.md CHANGED
@@ -20,6 +20,9 @@ size_categories:
20
  This is ~220,000 open-access PDF documents from the dataset [govdocs1](https://digitalcorpora.org/corpora/file-corpora/files/). It wants to be OCR'd.
21
 
22
 
 
 
 
23
  ## Recovering the data
24
 
25
  Download the `data/` directory (with `huggingface-cli download` or similar) extract the tar pieces:
@@ -28,6 +31,9 @@ Download the `data/` directory (with `huggingface-cli download` or similar) extr
28
  cat data_pdfs_part.tar.* | tar -xf - && rm data_pdfs_part.tar.*
29
  ```
30
 
 
 
 
31
  ## GovDocs1 PDF Dataset Analysis
32
 
33
  Based on the [index.csv](data/index.csv)
@@ -127,7 +133,7 @@ Based on the [index.csv](data/index.csv)
127
 
128
  | Date Field | Range | Issues |
129
  |------------|-------|--------|
130
- | **Modified Date** | 1979-12-31 to 2025-03-31 | Future dates present |
131
  | **Created Date** | Various formats | 1,573 invalid "D:00000101000000Z" |
132
 
133
  ### Critical Assessment
@@ -150,4 +156,6 @@ Based on the [index.csv](data/index.csv)
150
 
151
  **Fatal Flaw**: This dataset has excellent technical extraction (99.96% success) but catastrophic intellectual organization. You're essentially working with 230K unlabeled documents.
152
 
153
- **Bottom Line**: The structural data is solid, but without subject classification for 79% of documents, this is an unindexed digital landfill masquerading as an archive.
 
 
 
20
  This is ~220,000 open-access PDF documents from the dataset [govdocs1](https://digitalcorpora.org/corpora/file-corpora/files/). It wants to be OCR'd.
21
 
22
 
23
+ - the dataset is uploaded as `tar` file pieces of ~10 GiB each due to size/file count limits with an [index.csv](data/index.csv) covering the details
24
+ - 5,000 randomly sampled PDFs are available unarchived in the `sample/` directory
25
+
26
  ## Recovering the data
27
 
28
  Download the `data/` directory (with `huggingface-cli download` or similar) extract the tar pieces:
 
31
  cat data_pdfs_part.tar.* | tar -xf - && rm data_pdfs_part.tar.*
32
  ```
33
 
34
+ ---
35
+
36
+
37
  ## GovDocs1 PDF Dataset Analysis
38
 
39
  Based on the [index.csv](data/index.csv)
 
133
 
134
  | Date Field | Range | Issues |
135
  |------------|-------|--------|
136
+ | **Modified Date** | 1979-12-31 to 2025-03-31 | (dates in 2023-2025 are incorrect/defaulted to) |
137
  | **Created Date** | Various formats | 1,573 invalid "D:00000101000000Z" |
138
 
139
  ### Critical Assessment
 
156
 
157
  **Fatal Flaw**: This dataset has excellent technical extraction (99.96% success) but catastrophic intellectual organization. You're essentially working with 230K unlabeled documents.
158
 
159
+ **Bottom Line**: The structural data is solid, but without subject classification for 79% of documents, this is an unindexed digital landfill masquerading as an archive.
160
+
161
+ ---