File size: 10,681 Bytes
d9c756d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# PDEInvBench
## Adding a New Model

The PDEInvBench framework is designed to be modular, allowing you to easily add new model architectures. This section describes how to add a new encoder architecture to the repository.

## Table of Contents
- [Model Architecture Components](#model-architecture-components)
- [Adding a new model](#adding-a-new-model)
    - [Step 1: Create a New Encoder Class](#step-1-create-a-new-encoder-class)
    - [Step 2: Import and Register Your Model](#step-2-import-and-register-your-model)
    - [Step 3: Create a Configuration File](#step-3-create-a-configuration-file)
    - [Step 4: Run Experiments with Your Model](#step-4-run-experiments-with-your-model)

## Model Architecture Components

The inverse model architecture in PDEInvBench consists of three main components:


```
Input Solution Field → Encoder → Downsampler → Parameter Network → PDE Parameters
```

1. **Encoder**: Extracts features from the input solution field (e.g., FNO, ResNet, ScOT)
2. **Downsampler**: Reduces the spatial dimensions of the features (e.g., ConvDownsampler)
3. **Parameter Network**: Predicts PDE parameters from the downsampled features


## Adding a new model

When creating a new model, you typically only need to modify one of these components while keeping the others the same.

### Step 1: Create a New Encoder Class

First, create a new encoder class in `pdeinvbench/models/encoder.py`. Your new encoder should follow the interface of existing encoders like `FNOEncoder`, `ResnetEncoder`, or `SwinEncoder`:

```python
import torch
import torch.nn as nn
from pdeinvbench.utils.types import PDE
from pdeinvbench.models.encoder import resolve_number_input_channels

class YourEncoder(nn.Module):
    """
    Your custom encoder for PDE inverse problems.
    """
    
    def __init__(
        self,
        n_modes: int,  # Or equivalent parameter for your architecture
        n_layers: int,
        n_past: int,
        n_future: int,
        pde: PDE,
        data_channels: int,
        hidden_channels: int,
        use_partials: bool,
        mode: str,
        batch_size: int
        # Add any architecture-specific parameters
    ):
        super(YourEncoder, self).__init__()
        
        # Store essential parameters
        self.n_past = n_past
        self.n_future = n_future
        self.pde = pde
        self.data_channels = data_channels
        self.hidden_channels = hidden_channels
        self.use_partials = use_partials
        self.mode = mode
        self.batch_size = batch_size

        
        # Calculate input channels similar to existing encoders
        in_channels = resolve_number_input_channels(
            n_past=n_past,
            data_channels=data_channels,
            use_partials=use_partials,
            pde=pde,
        )
        
        # Define your model architecture
        # Example: Custom neural network layers
        self.encoder_layers = nn.ModuleList([
            # Your custom layers here
            nn.Conv2d(in_channels, hidden_channels, kernel_size=3, padding=1),
            nn.ReLU(),
            # Add more layers as needed
        ])
        
        # Output layer to match expected output dimensions
        self.output_layer = nn.Conv2d(hidden_channels, hidden_channels, kernel_size=1)
        
    def forward(self, x, **kwargs):
        """
        Forward pass of your encoder.
        
        Args:
            x: Input tensor of shape [batch, channels, height, width]
            **kwargs: Additional arguments (may include 't' for time-dependent models)
            
        Returns:
            Output tensor of shape [batch, hidden_channels, height, width]
        """
        # Implement your forward pass
        for layer in self.encoder_layers:
            x = layer(x)
        
        x = self.output_layer(x)
        return x
```

#### Creating Custom Downsamplers

If you need a custom downsampler, create it in `pdeinvbench/models/downsampler.py`:

```python
import torch
import torch.nn as nn

class YourDownsampler(nn.Module):
    """
    Your custom downsampler for reducing spatial dimensions.
    """
    
    def __init__(
        self,
        input_dimension: int,
        n_layers: int,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int,
        padding: int,
        dropout: float,
    ):
        super(YourDownsampler, self).__init__()
        
        # Define your downsampling layers
        self.layers = nn.ModuleList([
            # Your custom downsampling layers here
            nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),
            nn.ReLU(),
            nn.Dropout(dropout),
        ])
        
    def forward(self, x):
        """
        Forward pass of your downsampler.
        
        Args:
            x: Input tensor of shape [batch, channels, height, width]
            
        Returns:
            Downsampled tensor
        """
        for layer in self.layers:
            x = layer(x)
        return x
```

#### Creating Custom MLPs

If you need a custom MLP, create it in `pdeinvbench/models/mlp.py`:

```python
import torch
import torch.nn as nn

class YourMLP(nn.Module):
    """
    Your custom MLP for parameter prediction.
    """
    
    def __init__(
        self,
        in_dim: int,
        hidden_size: int,
        dropout: float,
        out_dim: int,
        num_layers: int,
        activation: str,
    ):
        super(YourMLP, self).__init__()
        
        # Define your MLP layers
        layers = []
        current_dim = in_dim
        
        for i in range(num_layers):
            layers.append(nn.Linear(current_dim, hidden_size))
            layers.append(nn.ReLU() if activation == "relu" else nn.Tanh())
            layers.append(nn.Dropout(dropout))
            current_dim = hidden_size
            
        layers.append(nn.Linear(current_dim, out_dim))
        self.layers = nn.Sequential(*layers)
        
    def forward(self, x):
        """
        Forward pass of your MLP.
        
        Args:
            x: Input tensor of shape [batch, features]
            
        Returns:
            Output tensor of shape [batch, out_dim]
        """
        return self.layers(x)
```

### Step 2: Import and Register Your Model

Make sure your encoder is imported in `pdeinvbench/models/__init__.py`:

```python
from .encoder import FNOEncoder, ResnetEncoder, ScOTEncoder, YourEncoder
```

This makes your encoder available for use in configuration files.

### Step 3: Create a Configuration File

The configuration system has three levels:

#### 3.1: Create Model Architecture Config

Create `configs/model/yourmodel.yaml`:

```yaml
# configs/model/yourmodel.yaml
name: "${system_params.name}_yourmodel"
dropout: ${system_params.yourmodel_dropout}
predict_variance: False
hidden_channels: ${system_params.yourmodel_hidden_channels}
encoder_layers: ${system_params.yourmodel_encoder_layers}
downsampler_layers: ${system_params.yourmodel_downsampler_layers}
mlp_layers: ${system_params.yourmodel_mlp_layers}

model_config:
  _target_: pdeinvbench.models.inverse_model.InverseModel
  paramnet: 
    _target_: pdeinvbench.models.inverse_model.ParameterNet
    pde: ${data.pde}
    normalize: ${system_params.normalize}
    logspace: ${system_params.logspace}
    params_to_predict: ${system_params.params_to_predict}
    predict_variance: ${model.predict_variance}
    mlp_type: ${system_params.mlp_type}
    encoder:
      _target_: pdeinvbench.models.encoder.YourEncoder
      n_modes: ${system_params.yourmodel_n_modes}
      n_past: ${n_past}
      n_future: ${n_future}
      n_layers: ${model.encoder_layers}
      data_channels: ${data.num_channels}
      hidden_channels: ${model.hidden_channels}
      use_partials: True
      pde: ${data.pde}
      mode: ${mode}
      batch_size: ${data.batch_size}
      use_cn: false
      task: inverse
    downsampler: ${system_params.yourmodel_downsampler}
    mlp_hidden_size: ${model.hidden_channels}
    mlp_layers: ${model.mlp_layers}
    mlp_activation: "relu"
    mlp_dropout: ${model.dropout}
    downsample_factor: ${data.downsample_factor}
```

#### 3.2: Add Defaults to `configs/system_params/base.yaml`

Add architecture defaults that work across all PDE systems:

```yaml
# configs/system_params/base.yaml

# ============ YourModel Architecture ============
yourmodel_hidden_channels: 64
yourmodel_encoder_layers: 4
yourmodel_downsampler_layers: 4
yourmodel_dropout: 0
yourmodel_mlp_layers: 1
yourmodel_n_modes: 16

yourmodel_downsampler:
  _target_: pdeinvbench.models.downsampler.ConvDownsampler
  input_dimension: ${system_params.downsampler_input_dim}
  n_layers: ${model.downsampler_layers}
  in_channels: ${model.hidden_channels}
  out_channels: ${model.hidden_channels}
  kernel_size: 3
  stride: 1
  padding: 2
  dropout: ${model.dropout}
```

#### 3.3: (Optional) Add System-Specific Overrides

Override defaults for specific systems in `configs/system_params/{system}.yaml`:

```yaml
# configs/system_params/2dtf.yaml
defaults:
  - base

# ... existing system config ...

# Override architecture for this system
yourmodel_hidden_channels: 128  # Needs larger model
yourmodel_encoder_layers: 6
```

**That's it!** Your model now works with all PDE systems:
```bash
python train_inverse.py --config-name=1dkdv model=yourmodel
python train_inverse.py --config-name=2dtf model=yourmodel
```


#### Important Notes

- **System-specific parameters** (like `params_to_predict`, `normalize`, `downsampler_input_dim`) go in `configs/system_params/{system}.yaml`
- **Architecture defaults** go in `configs/system_params/base.yaml`
- **Model structure** goes in `configs/model/{architecture}.yaml`
- For special cases like Darcy Flow, override the downsampler in the system_params file:
  ```yaml
  # configs/system_params/2ddf.yaml
  yourmodel_downsampler:
    _target_: pdeinvbench.models.downsampler.IdentityMap
  ```

### Step 4: Run Experiments with Your Model

You can now run experiments with your custom model on **any** PDE system:

```bash
# Use your model with different PDE systems
python train_inverse.py --config-name=1dkdv model=yourmodel
python train_inverse.py --config-name=2dtf model=yourmodel
python train_inverse.py --config-name=2dns model=yourmodel

# Use model variants if you created them
python train_inverse.py --config-name=2drdk model=yourmodel_large

# Override parameters from command line
python train_inverse.py --config-name=2dtf model=yourmodel model.hidden_channels=96

# Combine multiple overrides
python train_inverse.py --config-name=2ddf model=yourmodel data.batch_size=16 model.encoder_layers=6
```